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We construct a symplectic realization of the twisted Poisson structure on the phase space of an electric
charge in the background of an arbitrary smooth magnetic monopole density in three dimensions. We use
the extended phase space variables to study the classical and quantum dynamics of charged particles in
arbitrary magnetic fields by constructing a suitable Hamiltonian that reproduces the Lorentz force law
for the physical degrees of freedom. In the source-free case the auxiliary variables can be eliminated via
Hamiltonian reduction, while for nonzero monopole densities they are necessary for a consistent
formulation and are related to the extra degrees of freedom usually required in the Hamiltonian description
of dissipative systems. We obtain new perspectives on the dynamics of dyons and motion in the field of
a Dirac monopole, which can be formulated without Dirac strings. We compare our associative phase space
formalism with the approach based on nonassociative quantum mechanics, reproducing extended versions
of the characteristic translation group three-cocycles and minimal momentum space volumes, and prove
that the two approaches are formally equivalent. We also comment on the implications of our symplectic
realization in the dual framework of nongeometric string theory and double field theory.
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I. INTRODUCTION AND SUMMARY

Despite their elusiveness to experimental observation,
magnetic monopoles have been of wide-spread theoretical
interest in various areas of physics for many years due to
their novel conceptual and mathematical implications.
In particular, the quantum mechanics of an electric charge
coupled to a magnetic monopole density exhibits a variety
of interesting geometric and algebraic features. For the
standard example of motion in the field of a Dirac
monopole, the charged particle wavefunction can be
regarded as a section of a non-trivial line bundle associated
to the Hopf fibration [1] which provides a topological
explanation for Dirac charge quantisation [2,3] and for-
mulates the quantum dynamics of the particle without using
the unphysical Dirac string singularities that usually arise

due to the absence of a globally defined magnetic vector
potential for the monopole field.
In this paper we are predominantly interested in smooth

distributions of magnetic charge, for which vector poten-
tials do not exist even locally and the classical dynamics of
the canonical phase space coordinates of the particle are
described by a necessarily nonassociative twisted Poisson
algebra. These systems have been of interest recently as
magnetic analogues of certain flux models in nongeometric
string theory and double field theory, see e.g., [4–8] and
references therein. In these instances the corresponding
quantum theory cannot be formulated in the usual frame-
work of canonical quantisation by operators acting on a
separable Hilbert space. Two formulations have thus
far been proposed to handle nonassociative quantum
mechanics in this setting, each with its own limitations.
Deformation quantization by explicit construction of non-
associative phase space star products was originally
developed by [9], and subsequently treated in [4,10,11];
however, beyond the case of constant magnetic charge
density, this procedure does not yield a quantization of the
classical dynamical system because the Planck constant ℏ
appears as a formal expansion parameter, and the result is a
deformation over an algebra of formal power series rather
than with a complex parameter. On the other hand, the
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approach of [12,13] is based on developing algebraic
properties of quantum moments from the assumption that
the underlying twisted Poisson algebra is a Malcev algebra;
however, even in the simplest case of constant monopole
density, the alternative property used there cannot be
realized in general and this formalism is restricted to
observables which are linear in the kinematical momenta.
The purpose of the present paper is to develop a new

approach to the classical and quantum dynamics of electric
charges in monopole distributions by generalizing the
technique of ‘symplectic realisation’ fromPoisson geometry
[14–17]. Symplectic realization is a useful mathematical
tool for quantization, because it embeds arbitrary Poisson
manifolds into the framework of geometric quantization or
other standard quantization methods based on symplectic
structures. In the following we construct a symplectic
realization of the twisted Poisson structure corresponding
to the algebra of covariant momenta of a charged particle in
the background of an arbitrary monopole field. This con-
struction doubles the original phase space coordinates by
introducing a set of auxiliary degrees of freedom (d.o.f.).
The resulting associative extended algebra of Poisson
brackets is then used to construct a Hamiltonian description
of a charged particle interacting with a distribution of
magnetic monopoles, by an appropriate choice of
Hamiltonian on the extended phase space that leads to the
Lorentz force equation for the physical coordinates. In the
case of a magnetic field with no monopole sources, one can
eliminate the auxiliary variables by Hamiltonian reduction
and thus recover the standard Hamiltonian formulation of
a charged particle in a divergenceless magnetic field.
However, in the presence of magnetic monopoles, the
auxiliary d.o.f. are necessary for a consistent Hamiltonian
description. In the particular example of a spherically
symmetric magnetic field sourced by a constant monopole
density, we show that Hamiltonian reduction results either in
free particle motion or in the absence of propagating d.o.f.
altogether. We demonstrate that the necessary presence of
auxiliary d.o.f. in this case is related to the fact that the
motion of a charged particle can be effectively described as
motion in the field of a single Dirac monopole with
some frictional forces [4], and normally the consistent
Hamiltonian description of a system with friction requires
the introduction of additional d.o.f. representing a reservoir.
With this set up, quantization then proceeds along the

usual lines using canonical methods by constructing a
suitable Hilbert space on which the quantum Hamiltonian
operator acts, and studying the Schrödinger equation. Our
formalism mimics the standard quantization schemes
which assume that the phase space is topologically trivial
and that the magnetic field has a globally defined vector
potential. In standard approaches this is not the case even
for the Dirac monopole field. Our formalism also provides
a new perspective on the quantization of a charged particle
in the field of a Dirac monopole, in that our extended vector

potentials are constructed without the usual Dirac string
singularities [2,3]. In this respect our approach of employ-
ing extended coordinates is reminiscent of old approaches
to the description of electrodynamics with electric and
magnetic sources in terms of two vector potentials [18],
which also avoids the pathologies associated to the
unphysical Dirac string; however, this latter formulation
necessitates Dirac charge quantization for consistency,
whereas our approach does not. Our constructions analo-
gously have a natural extension to settings which respect
electromagnetic duality, and when applied to the dynamics
of dyons, our formalism circumvents the usual problems
with defining electromagnetically dual vector potentials.
Gauge theory versions of (ordinary associative) phase
space doubling were introduced by [19,20] for dealing
with Schwinger terms viewed as cocycles, and more
generally by [21,22] for dealing with second class con-
straints; see [23] for an application of this formalism to the
superparticle and to the Proca Lagrangian.
We will demonstrate that the symplectic realisation

which we develop is equivalent to the framework of
nonassociative phase space quantum mechanics in terms
of star products of states and composition products of
observables [11], see [24] for a review in the setting of the
present paper. On the other hand, our framework avoids the
problems with constructing star products for spatially
varying monopole densities. Our formalism should repro-
duce the quantum fluctuations which compute the quantum
evolution of basic dynamical variables from [12,13], which
demonstrate that the nonassociative dynamics generically
exhibit modifications of the classical Lorentz force law (but
we do not check this in detail). In our formalism based on
an extended phase space we are able to reproduce the novel
predictions of nonassociative quantummechanics within an
associative approach, such as an extended realization of the
three-cocycle of the translation group which obstructs a
projective representation on the charged particle wave-
functions, and also of the minimal uncertainty volumes
due to nonvanishing associators. The latter are particularly
interesting in the string theory dual models where they
imply a coarse-graining of spacetime [11,25,26]. Indeed,
our framework is analogous to the locally “nongeometric”
backgrounds in string theory, wherein there are no local
expressions for the geometry and the background fields
require the extended space of double field theory for their
proper definition. In particular, as discussed by e.g., [7], the
uniform magnetic charge density is the magnetic analogue
of the locally nongeometric R-flux background of string
theory in three dimensions. Our approach bears certain
qualitative similarities to double field theory, such as an
underlying Oð3; 3Þ ×Oð3; 3Þ symmetry of the dynamics
on the extended phase space, but also certain important
differences that we discuss in the following.
The outline of the remainder of this paper is as follows.

In Sec. II we introduce our symplectic realization of the
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twisted Poisson algebra governing the kinematics of an
electric charge in a generic magnetic background; our
approach generalizes the standard symplectic realizations
of Poisson structures whose technical details we briefly
describe in Appendix A. In Sec. III we demonstrate how to
construct a suitable Hamiltonian on the extended phase
space which reproduces the classical Lorentz force law for
the physical d.o.f., while in Sec. IV we analyse in detail the
problem of classical Hamiltonian reduction, or polariza-
tion, of the extended dynamics. In Sec. V we extend our
formalism in a way which respects electromagnetic duality
and describe the ensuing dynamics of dyons within our
symplectic realisation. In Sec. VI we address the problem
of explicitly integrating the equations of motion for a
charged particle in a magnetic monopole background; for
spherically symmetric magnetic fields sourced by constant
monopole densities we relate the classical dynamics on
extended phase space to that of dissipative systems, which
is reviewed briefly in Appendix B, and we show that the
equations of motion are integrable in the case of axial
magnetic fields, obtaining the explicit solution which is
analogous to motion in the source-free case. In Sec. VII we
consider the quantum dynamics in the symplectic realiza-
tion, demonstrating how the extended formalism reprodu-
ces the expected results in source-free cases, and exploiting
the connections to quantum dissipation discussed in
Appendix B. In Sec. VIII we demonstrate how our
extended associative formulation captures features of non-
assocative quantum mechanics, and in Sec. IX we show
that the symplectic realization is formally equivalent to
the phase space formulation of nonassociative quantum
mechanics in terms of star products and composition
products. A final Appendix C compares the extended
phase space of the symplectic realization to the phase
space of locally nongeometric closed strings and double
field theory, and also presents potential applications of our
formalism in nongeometric M-theory.

II. SYMPLECTIC REALIZATION OF THE
MAGNETIC MONOPOLE ALGEBRA

The phase space P of a nonrelativistic point particle with
electric charge e and mass m in a magnetic field B⃗ðx⃗Þ in
three dimensions is parametrized by position coordinates

x⃗ ∈ R3 and the kinematical momentum variables ⃗π̄ ¼ m_x⃗,
where an overdot denotes a time derivative. The coordinate
algebra is defined by the brackets

fxi; xjg ¼ 0; fxi; π̄jg ¼ δij

and fπ̄i; π̄jg ¼ eεijkBkðx⃗Þ; ð2:1Þ

where throughout we set the speed of light to c ¼ 1. These
brackets are equivalent to an almost symplectic structure on
P, i.e., a nondegenerate two-form on phase space given by

ω ¼ e
2
εijkBkðx⃗Þdxi ∧ dxj þ dπ̄i ∧ dxi; ð2:2Þ

which is not generally closed: The Jacobiator amongst the
momenta π̄i is given by

fπ̄i; π̄j; π̄kg ≔
1

3
fπ̄i; fπ̄j; π̄kgg þ cyclic

¼ eεijk∇⃗ · B⃗: ð2:3Þ

Thus the brackets (2.1) generically define a twisted Poisson
structure on the six-dimensional phase space, with twisting

three-form τ ¼ dω ¼ e
3!
εijkð∇⃗ · B⃗Þdxi ∧ dxj ∧ dxk on the

configuration space.1

In classical Maxwell theory one has ∇⃗ · B⃗ ¼ 0, so that
the Jacobiator (2.3) vanishes and the algebra (2.1) is
associative. In this case the magnetic field can be written

as B⃗ ¼ ∇⃗ × a⃗ for a globally defined smooth vector poten-
tial a⃗ðx⃗Þ on R3, and the Poisson algebra can be represented
by transforming the symplectic two-form (2.2) to the
standard symplectic structure ω ¼ dpi ∧ dxi for the
canonically conjugate position and momentum coordinates
x⃗ and p⃗ ¼ ⃗π̄ þ ea⃗.
For the spherically symmetric field

B⃗Dðx⃗Þ ¼ g
x⃗
jx⃗j3 ð2:4Þ

of a Dirac monopole at the origin with magnetic charge g,
the algebra is associative at every point away from the
location of the monopole. In this case one can excise the
origin, where B⃗D is singular, and locally define a corre-
sponding vector potential [27]

a⃗Dðx⃗Þ ¼
g
jx⃗j

x⃗ × n⃗
jx⃗j − x⃗ · n⃗

ð2:5Þ

at every position x⃗ of the configuration space R3nf0⃗g,
which has a smaller domain of regularity obtained by
removing a Dirac string singularity [2,3] along the line in
the direction of the fixed unit vector n⃗ from the origin to
infinity in R3. The exclusion of the origin from the
configuration space implies that the charged particle and
the monopole cannot simultaneously occupy the same
point in space.
In the present paper we are primarily interested in

smooth distributions of magnetic poles, where ∇⃗ · B⃗ ≠ 0

on a connected dense open subset ofR3. In this case there is
no associated local vector potential and the algebra (2.1) is

1See Appendix A for relevant background on Poisson geom-
etry, and in particular for a brief account of the general theory of
symplectic realizations that we use below.
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nonassociative on the entire configuration space R3. We
call it the magnetic monopole algebra.
In this section we will construct a symplectic embedding

of the magnetic monopole algebra. For this, let us introduce
an extended 12-dimensional phase space P with position
coordinates xI ¼ ðxi; x̃iÞ and momentum coordinates
pI ¼ ðpi; p̃iÞ, where i ¼ 1, 2, 3 and I ¼ 1;…; 6, which
have the canonical Poisson brackets fxI;xJg¼fpI;pJg¼0

and fxI; pJg ¼ δIJ. We define the “covariant” momenta
associated to the magnetic field B⃗ðx⃗Þ by

πI ¼ ðπi; π̃iÞ ¼ pI − eAIðxIÞ; ð2:6Þ

with the corresponding magnetic Poisson brackets

fπI; πJg ¼ eFIJðxIÞ with FIJ ¼ ∂IAJ − ∂JAI; ð2:7Þ

where ∂I ¼ ∂
∂xI. We choose the magnetic vector potential

AI ¼ ðAi; ÃiÞ as

A⃗ðxIÞ ¼ −
1

2
⃗x̃ × B⃗ðx⃗Þ and ⃗ÃðxIÞ ¼ 0⃗: ð2:8Þ

It has the property

⃗∇̃ × A⃗ ¼ B⃗; ð2:9Þ

where ⃗∇̃ are the directional derivatives along the extended
configuration space directions ⃗x̃, which we denote by
∂̃i ¼ ∂

∂x̃i. The nonvanishing Poisson brackets read

fxi; πjg ¼ fx̃i; π̃jg ¼ δij;

fπi; πjg ¼ e
2
ðεijk∂lBkðx⃗Þ − εijl∂kBkðx⃗ÞÞx̃l;

fπi; π̃jg ¼ fπ̃i; πjg ¼ e
2
εijkBkðx⃗Þ: ð2:10Þ

The algebra (2.10) defines a symplectic structure, and (2.6)
expresses πI in terms of the Darboux coordinates xI and pI .
To relate (2.10) with the magnetic monopole algebra

(2.1) we introduce

⃗π̄ ¼ π⃗ þ ⃗π̃: ð2:11Þ

The vanishing brackets are

fxi; xjg ¼ fxi; x̃jg ¼ fx̃i; x̃jg ¼ fxi; π̃jg ¼ fπ̃i; π̃jg ¼ 0;

ð2:12Þ

while the nonvanishing brackets are given by

fxi; π̄jg ¼ fx̃i; π̄jg ¼ fx̃i; π̃jg ¼ δij;

fπ̄i; π̄jg ¼ eεijkBkðx⃗Þ þ e
2
ðεijk∂lBkðx⃗Þ − εijl∂kBkðx⃗ÞÞx̃l;

fπ̄i; π̃jg ¼ fπ̃i; π̄jg ¼ e
2
εijkBkðx⃗Þ: ð2:13Þ

The symplectic two-form on the extended phase space P
corresponding to the Poisson brackets (2.13) is given by

Ω ¼ e
2

�
εijkBkðx⃗Þ þ 1

2
ðεijk∂lBkðx⃗Þ − εijl∂kBkðx⃗ÞÞx̃l

�
dxi

∧ dxj þ e
2
εijkBkðx⃗Þdxi ∧ dx̃j

þ dπ̄i ∧ dxi þ dπ̄i ∧ dx̃i þ dπ̃i ∧ dx̃i: ð2:14Þ

There is a natural projectionp∶ P → Pwithpðx⃗; ⃗x̃; ⃗π̄; ⃗π̃Þ ¼
ðx⃗; ⃗π̄Þ, under which our original phase space P can be
embedded into P as the zero section s0∶ P → P with
s0ðx⃗; ⃗π̄Þ ¼ ðx⃗; 0⃗; ⃗π̄; 0⃗Þ. Then the pullback of (2.14) to the
constraint surface C 0 ⊂ P defined by ⃗x̃ ¼ ⃗π̃ ¼ 0⃗ coincides
exactly with the almost symplectic structure (2.2), i.e.,
s�0Ω ¼ ΩjC 0

¼ ω. This therefore determines a symplectic
realization of the twisted Poisson structure on P (see
Appendix A), and it is in this sense that we refer to
(2.13) as a symplectic realization of the magnetic monopole
algebra (2.1).
An important example of a symplectic realization of

the magnetic monopole algebra corresponds to a constant
and uniform magnetic charge distribution with density

∇⃗ · B⃗ ¼ ρ. In this paper we will study in detail two
particular examples of corresponding magnetic fields.
A magnetic field with spherical symmetry is given by

B⃗spherðx⃗Þ ¼
ρ

3
x⃗; ð2:15Þ

with the symplectic algebra

fxi; π̄jg ¼ fx̃i; π̄jg ¼ fx̃i; π̃jg ¼ δij;

fπ̄i; π̄jg ¼ eρ
3
εijkðxk − x̃kÞ;

fπ̄i; π̃jg ¼ fπ̃i; π̄jg ¼ eρ
6
εijkxk: ð2:16Þ

As discussed in [7], the uniform magnetic charge density ρ
can be interpreted as a smearing of infinitely many densely
distributed Dirac monopoles of charge g ¼ ρ and magnetic
fields B⃗Dðx⃗ − y⃗Þ, and in this setting there is a formal
nonlocal magnetic vector potential for (2.15). The gauge
field on the extended configuration space from (2.8) in this
case,
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A⃗spherðxIÞ ¼ −
ρ

6
⃗x̃ × x⃗ and ⃗ÃspherðxIÞ ¼ 0⃗; ð2:17Þ

is a vector potential for (2.15) in the sense of (2.9). This
gives a precise meaning to the absence of a local definition
of the vector potential and to the formal nonlocal smeared
expression derived in [7]: A definition of fields of smooth
magnetic charge distributions akin to classical Maxwell
theory necessitates the symplectic realisation of the mag-
netic monopole algebra. It is this feature that we shall
exploit in the following which makes the classical and
quantum dynamics tractable.
At the opposite extreme, we can break spherical sym-

metry by choosing an axial magnetic field which is oriented
in the direction of a fixed vector in R3; this is the analogue
of a static uniform magnetic field in the source-free case.
We can choose coordinates in which this direction is along
the z-axis and take the linear magnetic field

B⃗axialðx⃗Þ ¼ ð0; 0; ρzÞ; ð2:18Þ

where x⃗ ¼ ðx; y; zÞ. This leads to the symplectic algebra

fxi; π̄jg ¼ fx̃i; π̄jg ¼ fx̃i; π̃jg ¼ δij;

fπ̄x; π̄yg ¼ eρz; fπ̄x; π̄zg ¼
eρ
2
ỹ and fπ̄y; π̄zg ¼−

eρ
2
x̃;

fπ̄x; π̃yg ¼ fπ̃x; π̄yg ¼
eρ
2
z: ð2:19Þ

The corresponding vector potential on the extended
configuration space is given by

A⃗axialðxIÞ ¼
ρ

2
ð−ỹz; x̃z; 0Þ and ⃗ÃaxialðxIÞ ¼ 0⃗: ð2:20Þ

Both magnetic fields (2.15) and (2.18) correspond to a
uniform magnetic charge distribution of density ρ, as

∇⃗ · B⃗spher ¼ ∇⃗ · B⃗axial ¼ ρ, and their difference is a diver-
genceless magnetic field

B⃗axialðx⃗Þ − B⃗spherðx⃗Þ ¼ ∇⃗ ×
2

3
A⃗axialðx⃗; x⃗Þ; ð2:21Þ

which therefore does not contribute to the distribution of
magnetic charge. However, it does contribute to the twisted
Poisson structure defining the magnetic monopole algebra

(2.1). Specifying only the equation ∇⃗ · B⃗ ¼ ρ does not
uniquely define the corresponding magnetic field B⃗ so that,
in contrast to the magnetic field (2.4) of a Dirac monopole,
here we cannot apply considerations of spherical symmetry
and the fact that the field should be directed from the origin
to fix the form of B⃗. From a geometric perspective, the
Poisson algebra (2.7) is invariant under the usual one-form
gauge transformations AI ↦ AI þ ∂Iχ on R6, as in this
case AIðxIÞ defines a gauge field associated to a trivial

Uð1Þ-bundle over the extended configuration space.
However, it is not invariant under the higher two-form

gauge transformations B⃗ ↦ B⃗þ ∇⃗ × a⃗ of the magnetic

field on R3, which preserve the curvature ∇⃗ · B⃗ ¼ ρ. The
essential geometric feature is that the field of a constant and
uniform magnetic charge distribution defines a “higher”
gauge field associated to a Uð1Þ-gerbe on R3, contrary to
the field of a Dirac monopole which defines a gauge field
of a nontrivial Uð1Þ-bundle over R3nf0⃗g of degree g;
see [7,24,28] for further discussion of this point. This
absence of higher gauge symmetry has profound physical
consequences, as we shall see later on.

III. CLASSICAL DYNAMICS FROM
SYMPLECTIC REALIZATION

The classical motion of a spinless point particle of
electric charge e and mass m under the influence of both a
background magnetic field B⃗ðx⃗Þ and a background electric
field E⃗ðx⃗Þ in three dimensions is governed by the Lorentz
force

d ⃗π̄
dt

¼ e
m

⃗π̄ × B⃗þ eE⃗: ð3:1Þ

In this paper we assume that the electromagnetic back-
reaction due to acceleration of the charged particle is
negligible, and treat the magnetic and electric fields in
(3.1) as fixed prescribed backgrounds. As before, in this
equation we need not assume that the magnetic field B⃗ is
divergenceless, i.e., we include fields created by magnetic

poles. If ∇⃗ × E⃗ ¼ 0⃗, the electric field can be represented as

a gradient field E⃗ ¼ ∇⃗ϕ for a globally defined smooth
scalar potential ϕðx⃗Þ on R3. In this case, the Lorentz force

law (3.1), together with the definition _x⃗ ¼ ⃗π̄=m, can be
written as the Hamilton equations of motion _xi ¼ fxi;Hg,
_̄πi ¼ fπ̄i;Hg with the magnetic monopole algebra (2.1)
and the Hamiltonian taken to be the sum of the kinetic
energy and the electrostatic potential energy: Hðx⃗; ⃗π̄Þ ¼
⃗π̄2=2mþ eϕðx⃗Þ. When ∇⃗ × E⃗ ≠ 0⃗, for instance when
magnetic currents are present, this is no longer possible

when ∇⃗ · B⃗ ≠ 0. Here we shall allow for more general
electric fields in our formalism, i.e., we also allow for
motion in the field of general smooth distributions of
electric poles. This is natural from the present perspective,
but we shall argue for it more precisely later on through
considerations of electromagnetic duality. The purpose of
this section is to demonstrate that the Lorentz force (3.1)
follows in these generic situations from our symplectic
realization of the magnetic monopole algebra by choosing
an appropriate Hamiltonian function H on the extended
phase space P.
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For later use, we shall momentarily leave the explicit
form of the vector potential AIðxIÞ in (2.6) unspecified.
Since the Poisson brackets (2.7) do not depend on
momentum, while the Lorentz force is linear in the
kinematical momenta, the corresponding Hamiltonian is
quadratic in the momenta and of the general form

HðxI; πIÞ ¼
1

2
ð π⃗ ⃗π̃ Þ ·

�
a b

b c

��
π⃗

⃗π̃

�
þ VðxIÞ; ð3:2Þ

where a, b and c are real coefficients, and VðxIÞ is a smooth
potential energy function on the extended configuration
space. The corresponding Hamilton equations of motion
_xI ¼ fxI;Hg, _πI ¼ fπI;Hg read

_xi ¼ aπi þ bπ̃i;

_̃xi ¼ bπi þ cπ̃i;

_πi ¼ fπi; πjgðaπj þ bπ̃jÞ þ fπi; π̃jgðbπj þ cπ̃jÞ − ∂iV;

_̃πi ¼ fπ̃i; πjgðaπj þ bπ̃jÞ þ fπ̃i; π̃jgðbπj þ cπ̃jÞ − ∂̃iV;

ð3:3Þ

from which one obtains the coupled system of second order
differential equations for the extended configuration space
coordinates xi and x̃i given by

ẍi ¼ faπi þ bπ̃i;πjg_xj þfaπi þ bπ̃i; π̃jg _̃xj − a∂iV − b∂̃iV;

ð3:4Þ

̈x̃i ¼ fbπi þ cπ̃i;πjg_xj þfbπi þ cπ̃i; π̃jg _̃xj − b∂iV þ c∂̃iV:

ð3:5Þ

If a ¼ 0, b ¼ 2=m, fπ̃i; π̃jg ¼ 0 and fπ̃i; πjg ¼
ðe=2ÞεijkBkðx⃗Þ, which is exactly the case for the choice
of vector potential AIðxIÞ in the form (2.8), then the terms
proportional to the kinematical momentum in the right-
hand side of (3.4) reproduce the correct contribution
ðe=mÞ ⃗π̄ × B⃗ to the Lorentz force from the magnetic field
B⃗ðx⃗Þ. The scalar potential VðxIÞ is then defined by the
gradient field equation

−b ⃗∇̃V ¼ e
m
E⃗; ð3:6Þ

which leads to

VðxIÞ ¼ −
e
2
ð ⃗x̃ · E⃗ðx⃗Þ þ νðx⃗ÞÞ; ð3:7Þ

where νðx⃗Þ is an arbitrary smooth function on R3. An
analogous ambiguity also appears in the definition of the
vector potential from (2.8): If we redefine A⃗ by adding an

arbitrary smooth vector field α⃗ðx⃗Þ ¼ ⃗∇̃ð ⃗x̃ · α⃗ðx⃗ÞÞ to get

A⃗ðxIÞ ¼ α⃗ðx⃗Þ − 1

2
⃗x̃ × B⃗ðx⃗Þ; ð3:8Þ

then one still generates the magnetic field (2.9) and the
Poisson bracket fπ̃i; πjg is unchanged, and hence so is the
corresponding equation of motion (3.4). This ambiguity in
the definition of the scalar and vector potentials will be
fixed below when we consider conditions for a consistent
elimination of the auxiliary d.o.f. ð ⃗x̃; ⃗π̃Þ.
Setting c ¼ 0, the equations of motion thus become

ẍi ¼
e
m
εijk _xjBkðx⃗Þ þ e

m
Eiðx⃗Þ; ð3:9Þ

̈̃xi¼
e
m
½∂iαjðx⃗Þ−∂jαiðx⃗Þþðεijk∂lBkðx⃗Þ−εijl∂kBkðx⃗ÞÞx̃l�_xj

þ e
m
εijk _̃x

jBkðx⃗Þþ e
m
ðx̃j∂iEjðx⃗Þþ∂iνðx⃗ÞÞ: ð3:10Þ

The corresponding Hamiltonian is

HðxI; πIÞ ¼
1

m
πIη

IJπJ −
e
2
ð ⃗x̃ · E⃗ðx⃗Þ þ νðx⃗ÞÞ; ð3:11Þ

with the Oð3; 3Þ metric

ηIJ ¼
�

0 δij

δi
j 0

�
: ð3:12Þ

The Hamiltonian (3.11) is invariant under rotations in the
dynamical symmetry group Oð3; 3Þ ×Oð3; 3Þ of the
extended phase space coordinates ðxI; πIÞ ∈ R6 × R6 in
the symplectic realization. The price to pay for the
inclusion of generic magnetic fields B⃗ðx⃗Þ and electric
fields E⃗ðx⃗Þ here is the presence of the auxiliary variables
x̃i, whose dynamics are governed by the Eq. (3.10). In the
following we will elucidate the physical meaning of the
additional d.o.f. described by the coordinates x̃i.

IV. HAMILTONIAN REDUCTION

In this section we will view the original phase space P as
a Hamiltonian reduction of the extended phase space P
and analyse whether it is possible to consistently eliminate
the auxiliary variables from P, in the sense of preserving
the Lorentz force equation (3.1) for the observable coor-
dinates xi. We shall answer this question in the negative:
Upon imposing Hamiltonian constraints that get rid of the
additional d.o.f., our model based on the symplectic
realization of the magnetic monopole algebra cannot lead
to a Lorentz force law describing the interaction with
magnetic charges and currents. More precisely, we show
that introducing suitable constraints recovers the standard
model for the motion of electric charge in a source-free
magnetic field. However, these Hamiltonian constraints
annihilate the contribution to the Lorentz force from the
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magnetic sources. In particular, for the spherically sym-
metric magnetic field (2.15) they result in either free
particle motion, or in the absence of propagating d.o.f.
altogether, i.e., the constrained mechanics is “topological.”
This exemplifies the role and necessity of the auxiliary
coordinates for a consistent Hamiltonian description of the
interaction of the electric charge with the background
electromagnetic distributions.
In fact, it is rather elementary to see that the restriction of

the dynamical system with the Hamiltonian (3.11) to the
constraint surface C 0 eliminates all propagating d.o.f.
Conservation of the primary constraint ϕ⃗ ¼ ⃗x̃ ≈ 0⃗ gives
_ϕi ¼ fϕi;Hg ¼ 2

m π
i ≈ 0 and so results in the secondary

constraint ψ⃗ ¼ π⃗ ≈ 0⃗. On the constraint surface C 0 all
constraints ΦI ¼ ðϕi;ψ iÞ have vanishing Poisson brackets
among each other and are thus of first class: fΦI;ΦJg ≈ 0.
But six first class constraints in a 12-dimensional phase
space kills all dynamics and there are no propagating d.o.f.
At this stage, however, we may ask whether, starting

from the symplectic realization of the magnetic monopole
algebra, there is some more general constraint surface
ϕ⃗ðx⃗; ⃗x̃Þ ≈ 0⃗ and Hamiltonian (3.2) such that the reduced
Hamiltonian dynamics reproduces the Lorentz force (3.1).
Let us start again with a generic form for the vector
potential AIðxIÞ. The only way to obtain the Lorentz
force (3.1) from the system of differential equations (3.4)
and (3.5) is via a linear primary constraint of the generic
form

ϕ⃗ ¼ ⃗x̃ − ζx⃗ ≈ 0⃗; ð4:1Þ

for some nonzero real parameter ζ. We denote the corre-
sponding constraint surface in P by C ζ and global
section of the projection p∶ P → P by sζ∶ P → P with
s�ζΩ ¼ ΩjC ζ

. Conservation of the primary constraint (4.1)
implies the strong relations

dϕi

dt
¼ fϕi;Hg ¼ ðζa − bÞπi þ ðζb − cÞπ̃i ≈ 0; ð4:2Þ

and the analysis of the constrained Hamiltonian dynamics
now depends on which region we consider of the four-
dimensional space of parameters ða; b; c; ζÞ.
Suppose first that the parameters satisfy ζ ¼ b

a ¼ c
b. Then

(4.2) is identically zero, so (4.1) are first class constraints
in this case. The Hamiltonian (3.2) becomes

HðxI; πIÞ ¼
a
2
ðπ⃗ þ ζ ⃗π̃Þ2 þ VðxIÞ: ð4:3Þ

To obtain the constrained Hamilton equations of motion we
introduce the total HamiltonianHtot ¼ Hþ u⃗ · ϕ⃗, where ui
are Lagrange multipliers, and write _f ≈ s�ζff;Htotg on the
constraint surface C ζ for any function f on the extended

phase spaceP. Using (3.3) the equations of motion for the
phase space coordinates now read

_xi ≈ aðπi þ ζπ̃iÞ;
_πi ≈ afπi; πjgζðπj þ ζπ̃jÞ þ aζfπi; π̃jgζðπj þ ζπ̃jÞ

− ∂iVζ − ζui;

_̃xi ≈ aζðπi þ ζπ̃iÞ;
_̃πi ≈ afπ̃i; πjgζðπj þ ζπ̃jÞ þ aζfπ̃i; π̃jgζðπj þ ζπ̃jÞ

þ 1

ζ
∂iVζ þ ui; ð4:4Þ

where fπI; πJgζ ≔ s�ζfπI; πJg and Vζðx⃗Þ ≔ Vðx⃗; ζx⃗Þ. We
now observe that the combination of covariant momenta
Πi ≔ πi þ ζπ̃i is conserved, _Πi ¼ 0, with _xi ¼ aΠi and
_̃xi ¼ aζΠi, which implies ẍi ¼ ̈x̃i ¼ 0. Thus instead of the
Lorentz force due to the electromagnetic field, we obtain
free particle motion for the configuration space d.o.f. x⃗
and ⃗x̃. That is, this region of parameter space is not suitable
for our aims.
Henceforth we therefore assume ζ ≠ c

b. Then (4.2) can be
represented as a secondary constraint

ψ⃗ ¼ ⃗π̃ − γπ⃗ ≈ 0⃗; ð4:5Þ

where

γ ¼ −
ζa − b
ζb − c

: ð4:6Þ

Let us now write the total Hamiltonian Htot ¼
Hþ u⃗ · ϕ⃗þ v⃗ · ψ⃗ , and solve for the Lagrange multipliers
ui and vi. The Poisson brackets of the constraints are
fψ i;ϕjg ¼ −ð1þ ζγÞδij, and we suppose that ζγ ≠ −1, or
equivalently aζ2 − 2bζ þ c ≠ 0, for otherwise the con-
straints are of first class implying the absence of propa-
gating d.o.f. Then from the strong equality fϕi;Htotg ≈ 0

one finds v⃗ ¼ 0⃗. Conservation of the constraint (4.5)
implies the strong relation fψ i;Htotg ≈ 0, from which
one thereby obtains

ui ¼
1

1þ ζγ

�
ðaþ γbÞfπ̃i − γπi; πj þ ζπ̃jgζπj

þ
�
1

ζ
− γ

�
∂iVζ

�
; ð4:7Þ

where we used the identity bþ γc ¼ ζðaþ γbÞ that fol-
lows from the definition (4.6). The resulting equations of
motion are given by

SYMPLECTIC REALIZATION OF ELECTRIC CHARGE IN … PHYS. REV. D 98, 045005 (2018)

045005-7



_xi ≈ s�ζfxi;Htotg ¼ ðaþ γbÞπi;
_πi ≈ s�ζfπi;Htotg

¼ 1

1þ ζγ
ððaþ γbÞfπi þ ζπ̃i; πj þ ζπ̃jgζπj

− ð2 − ζγÞ∂iVζÞ; ð4:8Þ

which lead to the second order differential equations

ẍi¼aþγb
1þζγ

ðfπiþζπ̃i;πjþζπ̃jgζ _xj−ð2−ζγÞ∂iVζÞ: ð4:9Þ

This is exactly the Lorentz force corresponding to the
effective magnetic field

Bi
eff ¼

m
e
aþ γb
1þ ζγ

εijkðfπj þ ζπ̃j; πk þ ζπ̃kgζÞ; ð4:10Þ

and the effective electric field

E⃗eff ¼ −
m
e
ðaþ γbÞð2 − ζγÞ

1þ ζγ
∇⃗Vζ: ð4:11Þ

By explicitly calculating the pullback of the Poisson
brackets (2.7) (as a two-form) to the constraint surface C ζ,
the magnetic field (4.10) can be written in the form

B⃗eff ¼
mðζ þ 1Þðaþ γbÞ

1þ ζγ
∇⃗ × ðA⃗ζ þ ζ2 ⃗ÃζÞ; ð4:12Þ

where A⃗ζðx⃗Þ ≔ A⃗ðx⃗; ζx⃗Þ. Since the effective magnetic field
is derived from an effective vector potential, it satisfies

∇⃗ · B⃗eff ¼ 0 and so cannot be sourced by monopoles.
Writing B⃗mag ¼ B⃗ − B⃗eff , we can decompose the original

magnetic field B⃗ as

B⃗ ¼ B⃗mag þ
mðζ þ 1Þðaþ γbÞ

1þ ζγ
∇⃗ × ðA⃗ζ þ ζ2 ⃗ÃζÞ; ð4:13Þ

where the magnetic field B⃗mag with ∇⃗ · B⃗mag ¼ ∇⃗ · B⃗
accounts for the contributions from magnetic charge dis-
tributions, while (4.12) is the magnetic field created by
electric currents and time-varying electric fields. For the
Hamiltonian (3.11) and the specific choice of vector
potential AIðxIÞ from (3.8), one has

B⃗effðx⃗Þ ¼
ζ þ 1

2ζ
∇⃗ ×

�
α⃗ðx⃗Þ − ζ

2
x⃗ × B⃗ðx⃗Þ

�
: ð4:14Þ

Setting α⃗ ¼ 0⃗, for both spherically symmetric magnetic
fields (2.4) of a Dirac monopole and (2.15) of a uniform
magnetic charge distribution, the corresponding effective
magnetic field (4.14) vanishes and B⃗mag ¼ B⃗; in these cases,

the constrained dynamics describes free particle motion in
the absence of a force due to the potential Vζ. On the other
hand, for the axial magnetic field (2.18) with ζ ¼ 1 we find
B⃗eff ¼ 3

2
ðB⃗axial − B⃗spherÞ and B⃗mag ¼ 1

2
ð3B⃗spher − B⃗axialÞ.

Likewise, since the effective electric field (4.11) is a
gradient field of an effective electrostatic charge distribu-
tion, it satisfies ∇⃗ × E⃗eff ¼ 0⃗ and hence cannot be sourced
by magnetic currents. Writing E⃗mag ¼ E⃗ − E⃗eff , we can

decompose the original electric field E⃗ as

E⃗ ¼ E⃗mag −
m
e
ðaþ γbÞð2 − ζγÞ

1þ ζγ
∇⃗Vζ; ð4:15Þ

where the electric field E⃗mag with ∇⃗ × E⃗mag ¼ ∇⃗ × E⃗
accounts for the contributions from magnetic currents
and time-varying magnetic fields, while (4.11) is the
electric field sourced by electric charge distributions. For
the Hamiltonian (3.11) one has

E⃗effðx⃗Þ ¼
1

2ζ
∇⃗ðζx⃗ · E⃗ðx⃗Þ þ νðx⃗ÞÞ: ð4:16Þ

We can now ask for which original magnetic fields B⃗ and
electric fields E⃗ do the constrained equations of motion
(4.9) coincide with the original equations from (3.9), or
equivalently when do the effective magnetic and electric
fields from (4.14) and (4.16) (with ζ ¼ 1) coincide with the
original fields: B⃗eff ¼ B⃗ and E⃗eff ¼ E⃗. For the magnetic

field, one first requires ∇⃗ · B⃗ ¼ 0, so there exists a magnetic

vector potential a⃗ðx⃗Þ with B⃗ ¼ ∇⃗ × a⃗. From the identity

∇⃗ × ðx⃗ × B⃗Þ ¼ ð∇⃗ · B⃗Þx⃗ − ðx⃗ · ∇⃗ÞB⃗ − 2B⃗; ð4:17Þ

it follows that this requires ∇⃗ × α⃗ ¼ − 1
2
ðx⃗ · ∇⃗ÞB⃗. Since

the vector field α⃗ in the definition of the vector potential A⃗
from (3.8) is arbitrary, we can take

α⃗ðx⃗Þ ¼ a⃗ðx⃗Þ þ 1

2
x⃗ × B⃗ðx⃗Þ: ð4:18Þ

It is useful to retain the contribution (4.18) to the vector
potential (3.8) even in the more general case whereby

∇⃗ · B⃗ ≠ 0, and using the decomposition (4.13) we therefore
write

A⃗ðxIÞ¼ a⃗ðx⃗Þ−1

2
x⃗× B⃗magðx⃗Þ−

1

2
ð ⃗̃x− x⃗Þ× B⃗ðx⃗Þ; ð4:19Þ

where here ∇⃗ × a⃗ ¼ B⃗eff . For the spherically symmetric
field (2.15) the vector potential (4.19) coincides with
(2.17), while for the axial field (2.18) it modifies (2.20) to
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A⃗axialðxIÞ ¼
ρ

4
zðy − 2ỹ; 2x̃ − x; 0Þ and ⃗ÃaxialðxIÞ ¼ 0⃗:

ð4:20Þ

In a completely analogous way, we use the arbitrariness
of the function νðx⃗Þ appearing in the definition the scalar
potential VðxIÞ from (3.7) to ensure that the effective
electric field E⃗eff from (4.11) coincides with the original

electric field E⃗ when ∇⃗ × E⃗ ¼ 0⃗. In the general case we
thus find

VðxIÞ ¼ eϕðx⃗Þ − e
2
x⃗ · E⃗magðx⃗Þ −

e
2
ð ⃗x̃ − x⃗Þ · E⃗ðx⃗Þ; ð4:21Þ

where ∇⃗ϕ ¼ E⃗eff .
We have thereby established that, independently of the

choice of the vector potential AIðxIÞ and Hamiltonian
HðxI; πIÞ, imposition of the Hamiltonian constraints
(4.1) leads to the Lorentz force with the source-free
magnetic and electric fields B⃗eff and E⃗eff . Conversely, if
the original magnetic and electric fields are source-free then
the choices (4.19) for the vector potential AIðxIÞ and (4.21)
for the scalar potential VðxIÞ ensure that the constrained
equations of motion (4.9) coincide with the original
Lorentz force (3.9). Thus only in this source-free case
can we eliminate the auxiliary variables via Hamiltonian
reduction, and thus recover the standard model for the
dynamics of electric charges in magnetic and electric fields.
From a geometric perspective we have shown that, by
fixing the equations of motion (3.1) as the fundamental
entities, there is no polarisation on the extended symplectic
algebra which is compatible with both the Lorentz
force law and nonassociativity of the magnetic monopole
algebra (2.1): No polarization can lead to a nonassociative
algebra, and only associative algebras are possible upon
Hamiltonian reduction.

V. DYONIC MOTION

Thus far our considerations have treated magnetic and
electric fields on almost equal footing, and it is natural to
extend our formalism in a way which incorporates the
electromagnetic fields symmetrically. In fact, one of the
arguments supporting the existence of magnetic monopoles
is the desire to extend the electromagnetic duality of
vacuum Maxwell theory to cases with sources. Recall that
the electromagnetic duality transformation is the map of
order four acting on electric and magnetic fields as

ðE⃗; B⃗Þ ↦ ðB⃗;−E⃗Þ: ð5:1Þ

This transformation generates a cyclic subgroup Z4 ⊂
SOð2Þ of the global symmetry group of Maxwell theory
consisting of electromagnetic duality rotations

�
E⃗

B⃗

�
↦

�
cos θ sin θ

− sin θ cos θ

��
E⃗

B⃗

�
; ð5:2Þ

with θ ∈ ½0; 2πÞ, for which (5.1) is the θ ¼ π
2
member of

this family of continuous symmetries.
If a point particle of mass m is a dyon with electric and

magnetic charges qe and qm, respectively, the correspond-
ing Lorentz force law becomes

d ⃗π̄
dt

¼ 1

m
⃗π̄ × ðqeB⃗ − qmE⃗Þ þ qeE⃗þ qmB⃗: ð5:3Þ

This equation is invariant under the electromagnetic duality
rotations (5.2) if the charges of the dyon also transform
correspondingly as

�
qe
qm

�
↦

�
cos θ sin θ

− sin θ cos θ

��
qe
qm

�
: ð5:4Þ

A Hamiltonian formalism for the equations of motion (5.3)
can be developed along the lines of Secs. III and IV, by
simply substituting everywhere the original electric and
magnetic fields with the corresponding combinations

eE⃗ → qeE⃗þ qmB⃗ and eB⃗ → qeB⃗ − qmE⃗: ð5:5Þ

Our symplectic realization circumvents the usual problems
of electromagnetic duality associated with relating dual
vector potentials locally with the original ones. Let us look
at two explicit examples in detail.
Consider first the interaction of a pair of dyons in three

dimensions. We consider the field (2.4) of a Dirac monop-
ole, for which the effective magnetic field vanishes and
B⃗mag ¼ B⃗D, and we also introduce the electric field

E⃗Cðx⃗Þ ¼ e
x⃗
jx⃗j3 ð5:6Þ

corresponding to the Coulomb force exerted by a point
charge. Then the prescription of Sec. IV yields the
corresponding vector and scalar potentials

A⃗DðxIÞ ¼ −
qeg − qme

2jx⃗j3
⃗x̃ × x⃗ and

VCðxIÞ ¼ −
qeeþ qmg

2jx⃗j3 x⃗ · ðx⃗þ ⃗x̃Þ: ð5:7Þ

Note that, in contrast to (2.5), the vector potential on the
extended configuration space has no Dirac string singu-
larities and is defined for all ðx⃗; ⃗x̃Þ ∈ ðR3nf0⃗gÞ ×R3,
which coincides with the domain of the magnetic field
(2.4) in R6. The Hamiltonian describing the interaction of
two dyons of charges ðqm; qeÞ and ðg; eÞ is then given by
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HDCðxI; pIÞ ¼
2

m
π⃗D · ⃗π̃D þ VCðxIÞ

¼ 2

m
p⃗ · ⃗p̃ −

1

mjx⃗j2 ð
⃗x̃ × J⃗Þ · ⃗p̃

−
qeeþ qmg

2jx⃗j3 x⃗ · ðx⃗þ ⃗x̃Þ; ð5:8Þ

where the vector

J⃗ ¼ −ðqeg − qmeÞ
x⃗
jx⃗j ð5:9Þ

is the angular momentum of the electromagnetic field
produced by the pair of dyons around the axis through
the midpoint separating them. In the quantum mechanics
that we consider in Sec. VII, the components of the total
angular momentum operator generate the rotation group
SUð2Þ, and quantum states thereby form representations of
SUð2Þ. Requiring that they generate a finite-dimensional
representation of SUð2Þ leads to the quantisation of angular
momentum, giving

qeg − qme ¼ ℏ
2
n with n ∈ Z; ð5:10Þ

which is just Dirac charge quantization [2,3]. The quan-
tization condition (5.10) is preserved by electromagnetic
duality rotations (5.4) of both sets of dyon charges.
Consider next the motion of a single dyon in the

spherically symmetric fields of constant and uniform
magnetic and electric charge distributions of densities ρm
and ρe, respectively. We assume there are no currents
and set

B⃗spher ¼
ρm
3
x⃗ and E⃗spher ¼

ρe
3
x⃗: ð5:11Þ

The Lorentz force law reads

d ⃗π̄
dt

¼ qeρm − qmρe
3m

⃗π̄ × x⃗þ qeρe þ qmρm
3

x⃗: ð5:12Þ

The duality rotation in this case is given by (5.4) together
with

�
ρe

ρm

�
↦

�
cos θ sin θ

− sin θ cos θ

��
ρe

ρm

�
: ð5:13Þ

Then the equations of motion (5.12) are clearly invariant
under the transformations (5.4) and (5.13), as the rotation
group SOð2Þ preserves both the natural symplectic form
q⃗ ∧ ρ⃗ and inner product q⃗ · ρ⃗ on the two-dimensional
vector space R2. Following the prescription of Sec. IV,
we find the vector and scalar potentials

A⃗spherðxIÞ ¼ −
ðqeqmÞ ∧ ðρeρmÞ

6
⃗x̃ × x⃗ and

VspherðxIÞ ¼ −
ðqeqmÞ · ð

ρe
ρm
Þ

6
⃗x̃ · x⃗; ð5:14Þ

and we write the corresponding Hamiltonian on the
extended phase space P as

HspherðxI; pIÞ ¼
2

m
π⃗spher · ⃗π̃spher þ VspherðxIÞ

¼ 2

m
p⃗ · ⃗p̃þ

�
qe
qm

�
∧
�
ρe
ρm

�
3m

ð ⃗x̃ × x⃗Þ · ⃗p̃

−

�
qe
qm

�
·
�
ρe
ρm

�
6

⃗x̃ · x⃗: ð5:15Þ

VI. INTEGRABILITY

Let us now address the problem of integrating the
Lorentz force equation (3.1). The symplectic realisation
of the magnetic monopole algebra may be used to con-
sistently formulate the time evolution of classical observ-
ables; the Jacobi identity together with the Leibniz rule
allows for the implementation of the classical Liouville
theorem to construct integrals of motion in principle. We
look at this in detail for two particular electromagnetic
backgrounds in turn.

A. Spherically symmetric fields

We consider first the Hamiltonian (3.11) with the spheri-
cally symmetric magnetic field (2.15) and no electric
background, E⃗ ¼ 0⃗, which is given by

HspherðxI;pIÞ ¼
2

m
π⃗spher · ⃗π̃spher ¼

2

m
p⃗ · ⃗p̃þ eρ

3m
ð ⃗x̃× x⃗Þ · ⃗p̃:

ð6:1Þ

The solutions of the classical equations of motion (3.9) and
(3.10) are the union of the integral curves of the vector
field 2

m ð ⃗π̃; π⃗; eρ6 ðπ⃗ × x⃗ − 2 ⃗π̃ × ⃗x̃Þ; eρ
6
⃗π̃ × x⃗Þ on the extended

phase space P with the corresponding Hamiltonian flow
equations

_x⃗ ¼ 2

m
⃗π̃; _⃗x̃ ¼ 2

m
π⃗;

_π⃗ ¼ eρ
3m

ðπ⃗ × x⃗ − 2 ⃗π̃ × ⃗x̃Þ and _⃗π̃ ¼ eρ
3m

⃗π̃ × x⃗: ð6:2Þ

We need to find from these flow equations a sextuple of
integrals of motion ðI1;…; I6Þ, i.e., _I I ¼ fI I;Hg ¼ 0 for
I ¼ 1;…; 6. Several integrals of motion are readily found:
As usual, the Hamiltonian
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I1 ¼ Hspher ð6:3Þ

is trivially conserved, and so is the kinetic energy

I2 ¼
2

m
⃗π̃2 ð6:4Þ

which follows easily from (6.2) as _I2 ¼ 4
m
⃗π̃ · _⃗π̃ ¼ 0. There

is also the azimuthal angular momentum

I3 ¼ −L⃗2; ð6:5Þ

which corresponds geometrically to the volume of the
tetrahedron Δðx⃗; 2 ⃗π̃; L⃗Þ in the extended phase space P
formed by the position vector x⃗, the kinematical momentum
2 ⃗π̃, and the orbital angular momentum L⃗ ¼ 2x⃗ × ⃗π̃ of the
charged particle. The proof that I3 ¼ −4ðx⃗ × ⃗π̃Þ2 is a
conserved quantity easily follows from the triple scalar
product identity

I3 ¼ 2x⃗ · ðL⃗ × ⃗π̃Þ ¼ 4ðx⃗ · ⃗π̃Þ2 − 4x⃗2 ⃗π̃2 ð6:6Þ

together with (6.2).
However, in addition to commuting with the

Hamiltonian H, these three integrals of motion are in
involution with each other and therefore do not produce any
new conserved quantities. We have not been able to find
another three integrals of motion that would enable the
integration of the Hamilton equations of motion on the
extended phase space P. This problem is also considered
directly in the original phase space P by [4] where it is
suggested that, despite its spherical symmetry, the Lorentz
force equations (3.1) in the magnetic field (2.15) do not
appear to be integrable. This is in marked contrast to the
case of the magnetic field (2.4) of a Dirac monopole,
for which the Hamiltonian on extended phase space
becomes

HDðxI; pIÞ ¼
2

m
π⃗D · ⃗π̃D

¼ 2

m
p⃗ · ⃗p̃þ eg

mjx⃗j3 ð
⃗x̃ × x⃗Þ · ⃗p̃: ð6:7Þ

In this case integrability is ensured by conservation of the
Poincaré vector

K⃗ ¼ 2

m
x⃗ × ⃗p̃ −

eg
m

x⃗
jx⃗j ; ð6:8Þ

which is proportional to the sum of the orbital angular
momentum L⃗ with the angular momentum of the electro-
magnetic field due to the electric charge and the Dirac
monopole; one easily checks that the components of K⃗
commute with the extended Hamiltonian (6.7) and also

with the kinetic energy 2
m
⃗π̃2. In particular, the Dirac charge

quantisation condition (5.10) in this case simplifies to

eg ¼ ℏ
2
n with n ∈ Z: ð6:9Þ

The conservation of the Poincaré vector ensures that the
charged particle never reaches the location of the monopole
[4], as it precesses around the direction K⃗ with time-varying
angular frequency and the motion is confined to the surface
of a cone whose apex is the location of the monopole.2

It was shown in [4] that the motion of an electric charge
in the magnetic field (2.15) can be effectively described as
the dynamics in the field of a single Dirac monopole with
some frictional force: After a suitable time reparameteriza-
tion, the Lorentz force (3.1) can be brought to the form

m ̈x⃗þ λðtÞ_x⃗ ¼ e_x⃗ × B⃗D; ð6:10Þ

where the time-dependent friction coefficient λðtÞ captures
the uniform distribution of magnetic charge. In particular,
the motion is no longer confined in any direction. This
interpretation lends a physical explanation for the necessity
of keeping auxiliary d.o.f. in order to reproduce the correct
equations of motion (3.1) as we demonstrated in Sec. IV: A
consistent Hamiltonian description of dissipative dynamics
with friction typically requires the introduction of addi-
tional d.o.f. describing the reservoir which is needed to
absorb the dissipated energy, see Appendix B. This analogy
will be especially prominent when we consider the quan-
tisation of this system below. For dissipative systems the
auxiliary d.o.f. are needed to conserve the total energy. In
the present case the energy is already conserved in the
“physical” sector, suggesting that there may be another
physical quantity which is not conserved in the physical
subsystem but only in the complete doubled system. It
would be interesting to understand this further in order to
better clarify the physical meaning of the auxiliary coor-
dinates in our case.

B. Axial fields

The situation is remarkably simpler in the case of the
axial magnetic field (2.18). Let us first study the dynamics
of the physical coordinates. The Lorentz force in compo-
nents from (3.9) reads

_̃πx ¼ ωzπ̃y; _̃πy ¼ −ωzπ̃x and _̃πz ¼ 0; ð6:11Þ

where ω ¼ eρ=m and we assume here that eρ > 0. From
the third equation we discover another integral of motion
given by the kinematical momentum in the direction of the

2This is of course a well-studied system, and many extensions
and reductions have been considered previously, see e.g., [29,30].
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magnetic field, and from it we get zðtÞ ¼ vztþ z0. With the
appropriate choice of origin of coordinates, we may set
the initial position to z0 ¼ 0. vz is the constant velocity in
the z-direction, and we suppose that vz > 0. Note that the
Lorentz force in (6.11) is different from the force exerted
by the time-dependent magnetic field B⃗t ¼ ð0; 0; vzρtÞ that
would create an electric field E⃗ ¼ vzρðy;−x; 0Þ, which is
absent from (6.11). We will incorporate an electric back-
ground below to properly simulate dyonic motion, but for
the moment we focus on the solutions to the system (6.11).
From the second equation we then find π̃x ¼ − _̃πy=ωvzt,

and so the first equation gives

̈π̃y −
1

t
_̃πy þ ω2v2zt2π̃y ¼ 0: ð6:12Þ

We thus encounter dissipative dynamics as in the case of
spherical symmetry: This is the equation of motion for a
damped harmonic oscillator in one dimension with time-
dependent frequency and friction coefficient. The solution
of (6.12) with the initial conditions π̃xð0Þ ¼ 0 and π̃yð0Þ ¼
mvy=2 yields the kinematical momenta

2π̃xðtÞ ¼ mvy sin

�
ωvz
2

t2
�

and

2π̃yðtÞ ¼ mvy cos

�
ωvz
2

t2
�
: ð6:13Þ

The classical trajectories starting from the origin are then
given in terms of the Fresnel integrals SðuÞ ¼ R

u
0 sinðπ

2
t2Þdt

and CðuÞ ¼ R
u
0 cosðπ

2
t2Þdt as

xðtÞ ¼ vy

ffiffiffiffiffiffiffiffi
ωvz
π

r
S

� ffiffiffiffiffiffiffiffi
π

ωvz

r
t

�
and

yðtÞ ¼ vy

ffiffiffiffiffiffiffiffi
ωvz
π

r
C

� ffiffiffiffiffiffiffiffi
π

ωvz

r
t

�
: ð6:14Þ

A parameteric plot of the solution x⃗ðtÞ ¼ ðxðtÞ; yðtÞ; vztÞ is
displayed in Fig. 1. The trajectory of the electric charge is an

Euler spiral along the straight line ðvy
ffiffiffiffiffiffi
ωvz
4π

q
; vy

ffiffiffiffiffiffi
ωvz
4π

q
; vztÞ in

this case, to which the solution asymptotes at t → ∞. The
particle moves with uniform velocity along the direction of
themagnetic field and itsmotion in the planeperpendicular to
the field is confined. This is analogous tomotion in a uniform
magnetic field B⃗, wherein (6.12) is replaced by the standard
equation of motion for the one-dimensional harmonic
oscillator with the cyclotron frequency ωcyc ¼ ejB⃗j=m and
the charged particle follows a helicoidal trajectory with
uniform velocity along the direction of B⃗.
Let us now consider the motion of a dyon in this

magnetic background by including an axial electric field
E⃗ ¼ ð0; 0; ϱzÞ, with eϱ > 0, which yields a harmonic force

corresponding to a confining potential V ¼ eϱ
2
z2 in the

z-direction. In this case the time evolution of the axial
position coordinate with the initial conditions zð0Þ ¼ 0 and
_zð0Þ ¼ vz is given by zðtÞ ¼ vz sinðϖtÞ=ϖ, with oscillation
frequency ϖ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eϱ=m
p

. The differential equation for the
kinematical momentum 2π̃y then becomes

̈π̃y −ϖ cotðϖtÞ _̃πy þ
ω2v2z
ϖ2

sin2ðϖtÞπ̃y ¼ 0; ð6:15Þ

which reduces to (6.12) in the limit ϱ ¼ 0. For the special
electric charge density ϱ ¼ m=2e, i.e., ϖ ¼ 1, the appro-
priate choice of initial data gives the solutions

π̃xðtÞ ¼ cosðωvz cos tÞ and

π̃yðtÞ ¼ sinðωvz cos tÞ: ð6:16Þ

By electromagnetic duality, we should also set the magnetic
charge density to ρ ¼ m=2e, i.e., ω ¼ 1=2. Since
cosðvz

2
cos tÞ ≥ cosðvz

2
Þ > 0 if vz ≤ 3, the position coordi-

nate xðtÞ then increases monotonically with time, so that
the motion deconfines in the ðx; yÞ-plane after confining the
motion along the z-direction. That is, the three-dimensional
motion cannot be completely confined, contrary to the

FIG. 1. Motion of an electric charge in a linear magnetic field
along a fixed vector.
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expectations of [13]. This suggests that the corresponding
quantum Hamiltonian exhibits a continuous energy spec-
trum. Below we shall investigate various aspects of the
quantum mechanics of electric charge in the monopole
background within our symplectic realization.
Finally, we look at the dynamics of the auxiliary coor-

dinates. With the physical solution (6.13), from (3.10) they
evolve according to the equations of motion

_πx ¼ ωvz

�
tπy þ

m
2
ỹ −

mvy
2

t cos

�
ωvz
2

t2
��

;

_πy ¼ −ωvz
�
tπx þ

m
2
x̃ −

mvy
2

t sin

�
ωvz
2

t2
��

;

_πz ¼
mωvy
2

�
cos

�
ωvz
2

t2
�
x̃ − sin

�
ωvz
2

t2
�
ỹ

�
: ð6:17Þ

Thus the auxiliary d.o.f. obey a complicated inhomogeneous
system of coupled differential equations, which we have not
been able to integrate; it would be interesting to better
understand the physical significance of the auxiliary coor-
dinates from these equations. This is inmarked contrast to the
case of a uniform magnetic field B⃗, whereby (3.10) would
yield precisely the same Lorentz force law for the auxiliary
variables, as expected since in that case the constraints (4.1)
and (4.5) can be consistently imposed.
This example illustrates that the symplectic realization is

not always necessary for the integrability of the classical
motion. However, it is necessary for a proper formulation
of geometric quantisation, i.e., for a description of the
“canonical” quantum mechanics. This is analogous to the
situation of an electric charge in the background of a Dirac
monopole, wherein the classical equations of motion can be
integrated without an action formalism, but for quantization
it is necessary to construct a suitable vector potential in
order to define a Hamiltonian.

VII. QUANTUM DYNAMICS FROM
SYMPLECTIC REALIZATION

In this section we describe the quantization of the
dynamical system with Poisson brackets (2.10) and
Hamiltonian (3.11). We shall mostly ignore the electric
background in our discussion and set the scalar potential to
V ¼ 0. In the Schrödinger polarization, the quantum
Hilbert space H ¼ L2ðR6Þ consists of square-integrable
wavefunctions Ψ (with respect to the standard Lebesgue
measure) on the extended configuration space of the
charged particle, which later on we will treat geometrically
as sections of the trivial line bundle over R6 with
connection AI . On H we represent position operators x̂I

as multipliers, ðx̂IΨÞðxÞ ¼ xIΨðxÞ with xI ¼ ðxi; x̃iÞ, and
the canonical momentum operators p̂I as derivatives,
ðp̂IΨÞðxÞ ¼ −iℏ∂IΨðxÞ with ∂I ¼ ð∂i; ∂̃iÞ. Then the kin-
ematical momentum operators

π̂I ¼ ðπ̂i; ˆ̃πiÞ ¼ −iℏ∂I − eAI ð7:1Þ

define covariant differentiation on the trivial line bundle.
The corresponding quantum Hamiltonian is

Ĥ ¼ 1

m
π̂Iη

IJπ̂J ¼
1

m
ðπ̂i ˆ̃πi þ ˆ̃πiπ̂

iÞ

¼ 2

m
ð−iℏ∇⃗ − eA⃗Þ · ð−iℏ ⃗∇̃ − e ⃗ÃÞ: ð7:2Þ

The probability current J I ¼ ðJ i; J̃ iÞ for a given state Ψ
is defined by

J I ¼ 1

m
ððΨ�ηIJp̂JΨ−ΨηIJp̂JΨ�Þ−2eηIJAJjΨj2Þ: ð7:3Þ

Since the energy is conserved, as we have discussed in
Sec. VI, it suffices to consider stationary states Ψ which
vary simply with a time-dependent phase and we can study
energy eigenvalues E of the quantum Hamiltonian (7.2) via
the time-independent Schrödinger equation

ĤΨ ¼ EΨ: ð7:4Þ

Due to (7.4), in a stationary state the probability current is
conserved,

∂IJ I ¼ 0; ð7:5Þ

and hence the quantum theory is also unitary.
This quantum theory is defined on a six-dimensional

configuration space ðxi; x̃iÞ. In particular, the probability
current also has six components. Just as in the classical
situation considered in Sec. IV, we can try to eliminate the
auxiliary d.o.f. via quantum Hamiltonian reduction by
imposing the constraints (4.1) and (4.5) (with ζ ¼ γ ¼ 1)
at the quantum level, i.e., by restricting to the subspace
H phys ⊂ H of physical states Ψphys which are annihilated
by the constraint operators:

ϕ̂iΨphys ¼ ð ˆ̃xi − x̂iÞΨphys ¼ 0 and

ψ̂ iΨphys ¼ ð ˆ̃πi − π̂iÞΨphys ¼ 0: ð7:6Þ

The relevant commutator to analyze is given by

½ ˆ̃πi; π̂j� ¼ ½π̂i; ˆ̃πj� ¼
iℏe
2

εijkB̂
k; ð7:7Þ

where B̂k is the multiplier by the magnetic field B⃗ðx⃗Þ.
If the magnetic field B⃗ is divergenceless, i.e., B⃗ ¼ ∇⃗ × a⃗

everywhere, then the vector potential AIðxIÞ can be
defined as
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A⃗ðxIÞ ¼ 1

2
ða⃗ðx⃗Þ− ðx⃗ · ∇⃗Þa⃗ðx⃗Þ− ⃗̃x× B⃗ðx⃗ÞÞ and ⃗̃AðxIÞ ¼ 0⃗:

ð7:8Þ

With this choice, the effective quantum theory after
resolving the constraints (7.6) coincides with the standard
quantummechanical description of a charged particle in the
magnetic field with the Hamiltonian

Ĥeff ¼
1

2m
π̂iπ̂

i; ð7:9Þ

where

½π̂i; π̂j� ¼ iℏeεijkB̂
k
eff ¼ iℏeðd∂iaj − d∂jaiÞ: ð7:10Þ

In situations where the vector field a⃗ðx⃗Þ is not globally
defined onR3 but only in specified compact regions, like in
the case of the Dirac monopole, one can excise the support

of the magnetic charge distribution ∇⃗ · B⃗ from the con-
figuration space and take the wavefunctions to be sections
of a corresponding nontrivial line bundle over the excised
space of degree n ∈ Z given by the Dirac charge quantiza-
tion condition (6.9) [1]. In the standard treatments one
needs to restrict the domains of quantum operators to
wavefunctions which vanish sufficiently fast on the Dirac
string, whereas in our approach we can simply consider
wavefunctions in H phys ¼ L2ðR3Þ that vanish at the locus
of the magnetic charge distribution, which provides a
suitable extension of the effective Hamiltonian (7.9) to
an essentially self-adjoint operator on H phys [4]. It is
known that a Dirac monopole and an electric charge do not
form a bound state, whereas dyonic bound states are
possible [27].
However, if ∇⃗ · B⃗ ≠ 0 everywhere then a vector potential

a⃗ðx⃗Þ does not exist even locally and the effective magnetic
field in (7.10) does not account for the contribution from
magnetic sources. In particular, for the spherically sym-
metric magnetic field (2.15) it simply vanishes, B⃗eff ¼ 0⃗,
and thus in this case the constraints (7.6) lead to a free
particle quantum theory without any interaction with the
magnetic field.
To understand better the quantum theory described by

the Hamiltonian (7.2), we first observe that it is an
unbounded operator on H . It is convenient to represent
it as a difference of two Hamiltonians which are each
bounded from below as

Ĥ ¼ Ĥþ − Ĥ− ≔
1

m
π̂iþπ̂iþ −

1

m
π̂i−π̂

i
−; ð7:11Þ

where

π̂i� ¼ 1ffiffiffi
2

p ðπ̂i � ˆ̃πiÞ: ð7:12Þ

The pairs of kinematical momentum operators (7.12) do not
commute in general,

½π̂iþ; π̂j−� ¼
iℏe
2

ðεijk d∂lBk − εijl
d∂kBkÞ ˆ̃xl; ð7:13Þ

and consequently neither do the Hamiltonians Ĥþ and Ĥ−
unless the magnetic field is constant. Let us begin by
considering some typical examples which illustrate how
the imposition of the constraints (7.6) recovers well-known
results, before moving on to our main examples of interest
with smooth distributions of magnetic charge.

A. Free particle

As a warmup, let us see how to reproduce free particle
quantum states in the absence of a magnetic field, AI ¼ 0.
The Schrödinger equation (7.4) in this case is

−
2ℏ2

m
∇⃗ · ⃗∇̃Ψðx⃗; ⃗x̃Þ ¼ EΨðx⃗; ⃗x̃Þ: ð7:14Þ

The eigenfunctions are the plane waves

Ψ
k⃗; ⃗k̃
ðx⃗; ⃗x̃Þ ¼ e−

i
2ℏðk⃗·x⃗þ ⃗k̃· ⃗x̃Þ; ð7:15Þ

with eigenvalues

E
k⃗; ⃗k̃

¼ k⃗ · ⃗k̃
2m

: ð7:16Þ

The physical state conditions (7.6) then force x⃗ ¼ ⃗x̃ and

k⃗ ¼ ⃗k̃, yielding the expected free particle plane waves and
kinetic energy spectrum

Ψphysðx⃗Þ ¼ Ψk⃗;k⃗ðx⃗; x⃗Þ ¼ e−
i
ℏk⃗·x⃗ and Ek⃗ ¼ E k⃗;k⃗ ¼

k⃗2

2m
:

ð7:17Þ

B. Landau levels

Consider the Landau problem, i.e., the motion of an
electric charge in a constant and uniform magnetic field B⃗,
which by a suitable choice of coordinates we can take to lie
along the z-axis, B⃗ ¼ ð0; 0; BÞ. In this case

A⃗ðxIÞ ¼ B
2
ð−ỹ; x̃; 0Þ and ⃗ÃðxIÞ ¼ 0⃗; ð7:18Þ

and the only nonvanishing commutators between the
covariant momentum operators are given by
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½π̂x�; π̂y�� ¼ �iℏeB: ð7:19Þ

In particular, the axial momentum operators p̂z and ˆ̃pz
commute with all other momentum operators, and so the
quantum states in the direction of B⃗ decouple into free
particle states which can be solved for along the same
lines as above. Henceforth we therefore consider only the
planar quantum states and, assuming eB > 0, we introduce
creation and annihilation operators as

â� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p ðπ̂x� þ iπ̂y�Þ and

â†� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p ðπ̂x� − iπ̂y�Þ: ð7:20Þ

One easily checks

½â�; â†�� ¼ 1; ð7:21Þ

while all other commutators vanish.
In terms of the operators (7.20) the Hamiltonian (7.11)

can be written as

Ĥ ¼ Ĥþ − Ĥ− ≔ ℏωcycðâ†þâþ − â†−â− − 1Þ; ð7:22Þ

where

ωcyc ¼
eB
m

ð7:23Þ

is the cyclotron frequency. This Hamiltonian is unbounded,
but it can be decomposed into the difference of two
Hamiltonians Ĥ� of harmonic oscillator type which are
bounded from below and commute, ½Ĥþ; Ĥ−� ¼ 0. As
discussed in Appendix B, the simultaneous eigenvalues of
â†�â� are the integers n� ∈ N0 such that the eigenvalues
of (7.22) are

Enþ;n− ¼ ℏωcycðnþ − n− − 1Þ ð7:24Þ

with corresponding eigenstates jnþ; n−i in the standard
number basis for the two-particle bosonic Fock space F .
Using the definition of the annihilation operator â− from
(7.20), the physical state constraints (7.6) read
â−Ψphys ¼ 0, which implies that the â−-oscillator must
be kept in its ground state for which â−jnþ; 0i ¼ 0. Then
the standard harmonic oscillator spectrum En ¼ En;0, and
hence the Landau levels of the electric charge, emerge. This
is the same as the known constraint from the quantum
theory of dissipative dynamics [31–34], see Appendix B.

C. Axial magnetic fields

The natural extension of the Landau problem considered
above is to the motion of an electric charge in a constant

and uniform magnetic charge distribution which sources an
axial magnetic field (2.18). In this case the vector potential
is given by (4.20) and the Hamiltonian reads

Ĥ ¼ 1

m
ðπ̂2xþ þ π̂2yþÞ −

1

m
ðπ̂2x− þ π̂2y−Þ þ

2

m
p̂z

ˆ̃pz; ð7:25Þ

with the algebra of nonvanishing commutation relations
among momentum operators given by

½π̂x�; π̂y�� ¼ � iℏ
4
eρẑ;

½π̂x�; p̂z� ¼ � iℏ

4
ffiffiffi
2

p eρðŷ − 2 ˆ̃yÞ;

½π̂y�; p̂z� ¼ � iℏ

4
ffiffiffi
2

p eρð2 ˆ̃x − x̂Þ: ð7:26Þ

In particular ½Ĥ; ˆ̃pz� ¼ 0, so the quantum states form
representations of the translation group generated by p̂z,
which are superpositions of the simultaneous eigenstates of
the axial momentum operator given by

Ψp̃z
ðx⃗; ⃗x̃Þ ¼ eip̃zz̃=ℏΨðx; y; z; x̃; ỹÞ with ˆ̃pzΨp̃z

¼ p̃zΨp̃z
:

ð7:27Þ

This defines a decomposition of the quantum Hilbert space
H into a direct integral

R⊕
p̃z∈R H p̃z

≔ L2ðR;H Þ, the
square-integrable sections of the state space viewed as a
(trivial) Hilbert bundle over the line R of axial momenta.
The Schrödinger equation (7.4) in the fiber subspace over
p̃z ∈ R is equivalent to Ĥp̃z

Ψ ¼ EΨ, with the restriction

of the Hamiltonian Ĥp̃z
≔ ĤjHp̃z

given by

Ĥp̃z
¼ 1

m
ðπ̂2xþ þ π̂2yþÞ−

1

m
ðπ̂2x−þ π̂2y−Þþ

2

m
p̃zp̂z: ð7:28Þ

Let us now introduce the frequency

ω ¼ eρ
m

ð7:29Þ

which appears in the classical solution of Sec. VI, and
we assume again that eρ > 0. We further introduce the
“creation” and “annihilation” operators

â� ¼
ffiffiffiffiffiffiffiffiffiffi
2

ℏmω

r
ðπ̂x�þ iπ̂y�Þ and â†� ¼

ffiffiffiffiffiffiffiffiffiffi
2

ℏmω

r
ðπ̂x�− iπ̂y�Þ;

ð7:30Þ

with the nonvanishing commutation relations

½â�; â†�� ¼ ẑ: ð7:31Þ
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In particular, the axial position operator ẑ is central in this
“oscillator” algebra: ½â�; ẑ� ¼ 0 and ½â†�; ẑ� ¼ 0. One easily
checks the further nonvanishing commutators

½â�; p̂z� ¼∓
ffiffiffiffiffiffiffi
ℏ
mω

r
e
2
ŵ and ½â†�; p̂z� ¼ �

ffiffiffiffiffiffiffi
ℏ
mω

r
e
2
ŵ†;

ð7:32Þ

where

ŵ¼ ð ˆ̃xþ i ˆ̃yÞ− 1

2
ðx̂þ iŷÞ and ŵ† ¼ ð ˆ̃x− i ˆ̃yÞ− 1

2
ðx̂− iŷÞ;

ð7:33Þ

and of course one has the canonical commutator

½ẑ; p̂z� ¼ iℏ: ð7:34Þ

The Hamiltonian (7.28) then becomes

Ĥp̃z
¼ ℏ

2
ωðâ†þâþ − â†−â− − ẑÞ þ 2

m
p̃zp̂z: ð7:35Þ

Naively, this Hamiltonian resembles that of the Landau
problem considered above, in that it decomposes into a free
particle Hamiltonian in the axial direction plus a doubled
“oscillator” system in the planar directions. However,
due to (7.32) and (7.34), these two components do not
commute, and moreover the planar “oscillator” depends
explicitly on the axial position operator through (7.31).
This coupling between the planar and axial momentum
operators hinders a complete analytic solution of the
Schrödinger equation, in contrast to the classical dynamics
from Sec. VI where the free motion in the axial direction
effectively reduces the problem to planar motion in a time-
dependent magnetic field which we were able to integrate.
Note that on physical states Ψphys satisfying the analogue
of the constraint equations (7.6) with ζ ¼ 1

2
in (4.1) one

has ŵΨphys ¼ 0 ¼ ŵ†Ψphys, so that the planar and axial
Hamiltonians commute on H phys, but now additionally
âþΨphys ¼ 0 ¼ â−Ψphys from (7.6) so that the planar
quantum dynamics trivializes and the free particle axial
states follow as before.
For states with vanishing axial momentum p̃z ¼ 0, the

spectrum of the Hamiltonian

Ĥ0 ¼
ℏ
2
ωðâ†þâþ − â†−â− − ẑÞ ð7:36Þ

is readily obtained: Via Fourier transformation of the
Schrödinger polarization, we can represent the axial posi-
tion operator as the derivative ẑ ¼ iℏ ∂

∂pz
so that the sub-

space H 0 ¼ F ⊗ L2ðRÞ is spanned by the eigenstates

Ψð0Þ
nþ;n−;zðpzÞ ¼ jnþ; n−i ⊗ ψ zðpzÞ ð7:37Þ

of (7.36), where ψ zðpzÞ ¼ e−izpz=ℏ are the eigenstates of ẑ
with axial position eigenvalue z ∈ R. The corresponding
energy eigenvalues are

Eð0Þ
nþ;n−;z ¼

ℏ
2
ωzðnþ − n− − 1Þ; ð7:38Þ

which is the spectrum of a doubled harmonic oscillator with
an axial position-dependent frequency. For small momenta,
via a suitable (length) regularization of the inner product on
L2ðRÞ it is easy to see that the first order correction to these
energies due to the perturbation by the axial momentum
operator in (7.35) vanishes, so that (7.38) represents the
energy of the system up to order Oðp̃2

zÞ. Thus the quantum
dynamics of the electric charge in an axial magnetic field
exhibits a continuous energy spectrum, and by our calcu-
lations from Sec. VI we do not expect the situation to
change by inclusion of a corresponding axial electric field.
It would be interesting to find the exact spectrum of the

Hamiltonian (7.35), but we will content ourselves here
with the approximate solution (7.38). The situation is of
course much more complicated for the spherically sym-
metric magnetic field (2.15), whose dyonic classical
Hamiltonian is given by (5.15), due to the fact that fewer
integrals of motion exist in that case. In Secs. VIII and IX
below we shall discuss some of the features of the charged
particle wavefunctions in the spherically symmetric case.

VIII. EXTENDED MAGNETIC TRANSLATIONS
AND TWO-COCYCLES

One of the most interesting aspects of the quantum
dynamics of electric charge in magnetic backgrounds is the
physical and mathematical structure of the magnetic trans-
lation group [35]. For source-free magnetic fields, the
electron wavefunctions carry a (weak) projective represen-
tation of the translation group R3 whose two-cocycle is
defined by the magnetic flux. On the other hand, for
magnetic fields sourced by monopole distributions, the
representation of the translation group is obstructed by an
anomalous three-cocycle defined by the magnetic charge,
which encodes a “nonassociative representation” in the
sense that the parallel transports implementing the trans-
lations do not associate [36]; in this case one cannot assign
operators to the translation generators which act on a
separable Hilbert space and one is forced to deal with
other methods of quantization, such as the phase space
formulation of nonassociative quantum mechanics [11,24],
or the action of parallel transports on a 2-Hilbert space
which generates higher projective representations [28]. In
this section we wish to see how these obstructing three-
cocycles are captured within the associative framework of
our symplectic realization, following the treatment of
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magnetic translations from [37,38] which we adapt to our
situation.
The key feature of the symplectic realisation is the

existence of a globally defined vector potential (2.8), which
we interpret geometrically as a connection on the trivial line
bundle over R6. Gauge invariance of the Schrödinger
equation (7.4) dictates that a gauge transformation
AI ↦ AI þ ∂Iχ is accompanied by a corresponding phase
transformation Ψ ↦ eieχΨ of the electron wavefunctions
Ψ ∈ H . In the presence of the magnetic field B⃗ðx⃗Þ, the
translation generators ∂I on the extended configuration
space R6 are modified to the kinematical momentum
operators (7.1), and hence we must extend the natural
operators which generate translations by vectors r ¼
ðr⃗; ⃗r̃Þ ∈ R6 on the quantum Hilbert space H ¼ L2ðR6Þ
to magnetic translation operators T̂ðrÞ which act on wave-
functions Ψ ∈ H at a point x ∈ R6 by parallel transport
along the line connecting x to xþ r:

ðT̂ðrÞΨÞðxÞ¼ exp

�
ie
ℏ

Z
1

0

dtrIAIðxþ trÞ
�
Ψðxþ rÞ: ð8:1Þ

This defines a one-cochain of the translation group in six
dimensions.
The operator T̂ðrÞT̂ðsÞT̂ðrþ sÞ−1 performs the parallel

transport of thewavefunctionΨðxÞ around the loop forming
the boundary ∂Δðx; r; sÞ of the triangle Δðx; r; sÞ based at
x ∈ R6 and spanned by the translation vectors r, s. In terms
of the one-form A ¼ AIdxI ¼ A⃗ðx⃗; ⃗x̃Þ · dx⃗ on the extended
configuration space whose components are given by (2.8),
this has the effect of multiplying ΨðxÞ by the Wilson loop
Wðx; r; sÞ of the gauge field e

ℏA around ∂△ðx; r; sÞ. We then
obtain the relations

T̂ðrÞT̂ðsÞ ¼ Ω̂ðr; sÞT̂ðrþ sÞ; ð8:2Þ

where the mutually commuting quantum operators Ω̂ðr; sÞ
for r, s ∈ R6 are the multipliers

ðΩ̂ðr; sÞΨÞðxÞ ≔ Wðx; r; sÞΨðxÞ: ð8:3Þ

The phase factor Wðx; r; sÞ is the coboundary of the one-
cochain defined by the parallel transport (8.1)which reads as

Wðx; r; sÞ ≔ exp

�
ie
ℏ

I
∂Δðx;r;sÞ

A

�
¼ exp

�
ie
ℏ

Z
Δðx;r;sÞ

F

�
;

ð8:4Þ

where F ¼ dA is the field strength of A whose components
are given by (2.7) and we have used Stokes’ theorem.3

By construction the extended magnetic translation oper-
ators associate,

ðT̂ðrÞT̂ðsÞÞT̂ðuÞ ¼ T̂ðrÞðT̂ðsÞT̂ðuÞÞ; ð8:5Þ

which implies that the multipliers of (8.2) satisfy the two-
cocycle condition

Ω̂ðr; sÞΩ̂ðrþ s; uÞ ¼ rΩ̂ðs; uÞΩ̂ðr; sþ uÞ; ð8:6Þ

where rΩ̂ðs; uÞ ≔ T̂ðrÞΩ̂ðs; uÞT̂ðrÞ−1 is the multiplier

ðrΩ̂ðs; uÞΨÞðxÞ ≔ Wðxþ r; s; uÞΨðxÞ: ð8:7Þ

The relations (8.2) and (8.6) imply that the map r ↦ T̂ðrÞ
defines a weak projective representation of the translation
group R6 on the quantum Hilbert space of statesH , where
by “weak” we mean that the projective phase is a multiplier
by (8.4) which has a non-trivial dependence on position
coordinates x ∈ R6 [38].
Using the Poisson algebra (2.10), it is easy to compute

the phase factor (8.4) explicitly in terms of surface integrals
over triangles in the extended configuration space to get

Wðx; r; sÞ ¼ exp

�
ie
ℏ

�
1

2

Z
Δðx⃗;r⃗; ⃗s̃Þ

B⃗ · dS⃗þ 1

2

Z
Δðx⃗; ⃗r̃;s⃗Þ

B⃗ · dS⃗

þ
Z
Δðx⃗;r⃗;s⃗Þ

ð∇⃗ · B⃗Þ ⃗x̃ · dS⃗
��

: ð8:8Þ

The third integration can be expressed as a volume integral
over the tetrahedron Δðx⃗; ⃗x̃; r⃗; s⃗Þ based at x⃗ ∈ R3 and
spanned by the vectors ⃗x̃, r⃗, s⃗. Altogether we then find

Wðx; r; sÞ ¼ exp

�
ie
ℏ

�
1

2

Z
Δðx⃗;r⃗; ⃗s̃Þ∪Δðx⃗; ⃗r̃;s⃗Þ

B⃗ · dS⃗

þ
Z
Δðx⃗; ⃗x̃;r⃗;s⃗Þ

∇⃗ · B⃗dV

��
: ð8:9Þ

The phase integrals in (8.9), which are each defined in
terms of auxiliary coordinates, combine to give a hybrid of
the usual magnetic flux two-cocycle in the source-free case
and the magnetic charge three-cocycle in the presence of
monopoles, in such a way so that Wðx; r; sÞ itself defines a
two-cocycle of the extended translation group R6. Let us
look at a few special cases to understand this structure more
thoroughly.
We start with the source-free case, ∇⃗ · B⃗ ¼ 0, so that the

second integral in (8.9) vanishes. As discussed in Sec. VII,
in this instance one can consistently implement quantum
Hamiltonian reduction through the constraints (7.6), and by
restricting the action of the multipliers (8.3) to physical
states Ψphys ∈ H phys ⊂ H , one can identify physical and
auxiliary translations and coordinates in (8.9) to get3Formally we may regard Ω̂ðr; sÞ ≔ Wðx̂; r; sÞ.
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W0ðx⃗; r⃗; s⃗Þ ¼ exp

�
ie
ℏ

Z
Δðx⃗;r⃗;s⃗Þ

B⃗ · dS⃗

�
: ð8:10Þ

Thus in this case we recover the standard two-cocycle of the
anticipated (weak) projective representation of the trans-
lation group R3 [35].
Next, for the Dirac monopole field (2.4), by restricting

to wavefunctions which vanish at the origin of R3 as
discussed in Sec. VII, one may again impose the constraints
(7.6), and hence identify physical and auxiliary variables
in (8.9). The second integral now computes the magnetic
charge enclosed by the tetrahedron Δðx⃗; r⃗; s⃗Þ, whose
contribution to the phase is unity due to the Dirac charge
quantisation condition (6.9). In this way we reproduce the
result of [36] for the projective two-cocycle phase

WDðx⃗; r⃗; s⃗Þ ¼ exp

�
ie
ℏ

Z
Δðx⃗;r⃗;s⃗Þ

B⃗D · dS⃗

�
ð8:11Þ

generated by the Dirac monopole.
Finally, let us consider the case of a constant magnetic

charge distribution with spherically symmetric magnetic
field (2.15). Contrary to the previous two cases, in this
instance one cannot impose quantum Hamiltonian reduc-
tion to eliminate the auxiliary variables, and explicit
computation of (8.9) yields

Wspherðx;r;sÞ ¼ exp

�
ieρ
ℏ

�
1

6
½ ⃗̃r; s⃗; x⃗�þ1

6
½r⃗; ⃗̃s; x⃗�þ ½r⃗; s⃗; ⃗̃x�

��
;

ð8:12Þ
where the triple scalar product ½r⃗; s⃗; ⃗x̃� ≔ r⃗ · ðs⃗ × ⃗x̃Þ is the
volume of the tetrahedron Δðr⃗; s⃗; ⃗x̃Þ in the extended
configuration space R6. The third phase contribution in
(8.12) is the analogue of the three-cocycle of the translation
group R3 which is calculated in nonassociative quantum
mechanics [11,24]; in the associative symplectic realiza-
tion, it is defined here by inserting an auxiliary position
vector ⃗x̃ into the third argument of the three-cocycle. Again,
all three phase contributions together in (8.12) ensure a
weak projective phase that defines a two-cocycle of the
extended translation group R6.
In nonassociative quantum mechanics [11,24], the non-

trivial three-cocycle in the case of uniform magnetic charge
density ρ has profound physical consequences on the
quantum system: It leads to a quantized momentum space
with a quantum of minimal volume 1

2
ℏ2ρ. In canonical

(associative) quantum mechanics such volume quantization
is not observable, because there is no nontrivial volume
operator. However, minimal areas are observable, such as
the phase space Planck cell quantum ℏ, and for the present
discussion the pertinent operator measuring area uncertain-
ties in the extended momentum space is given by setting
ˆ̄πr⃗ ≔ ri ˆ̄πi for r⃗ ∈ R3 and defining

Âr⃗;s⃗ ≔ Im½ ˆ̄πr⃗; ˆ̄πs⃗�: ð8:13Þ

The idea behind this definition is that the vector product of
two vectors r⃗, s⃗ from the physical subspace is a vector
in the extended configuration space, and so the operator
Âr⃗;s⃗ measures a physical volume in the extended space.
Indeed, using the Poisson algebra (2.16), we may compute
the expectation value of this oriented area operator in
any state Ψ ∈ H (with the standard L2-inner product)
to get

hΨjÂr⃗;s⃗jΨi ¼
ℏeρ
3

½r⃗; s⃗;δΨx⃗� with δΨxi ≔ hΨj ˆ̃xi − x̂ijΨi:
ð8:14Þ

We have seen in this case that the quantum dynamics in
magnetic charge backgrounds is not consistent with the
physical state conditions (7.6), and hence the quantum
tetrahedral volume computed by (8.14) is generically
nonzero. This is the sense in which our associative
formalism realises the characteristic minimal volumes. In
Sec. IX below we shall demonstrate more precisely the
correspondence between the symplectic realization and
nonassociative quantum mechanics.

IX. NONASSOCIATIVE
QUANTUM MECHANICS

In this final section we shall conclude with somewhat
more formal developments. One of our motivations for the
present study was to understand the somewhat mysterious
composition product that underlies the associative algebra
of observables in nonassociative quantum mechanics [11],
regarded as a nonassociative deformation of the standard
phase space formulation of quantum mechanics [39], and
provides an associative realisation of nonassociative star
products. Deformation quantization of the magnetic
monopole algebra (2.1) was originally carried out via
explicit construction of a nonassociative star product in
[9] (see also [4,10]), and cast into a quasi-Hopf algebraic
framework in [11]. We shall demonstrate how the asso-
ciative realization of nonassociative quantum mechanics in
terms of composition products from [11] can be realized
explicitly in terms of an algebra of differential operators on
phase space, and then show that this is identical to the
quantum algebra given by the symplectic realization of the
underlying twisted Poisson structure.

A. Nonassociative star product

For definiteness, throughout this section we work
explicitly with a uniform monopole density of strength ρ
in three dimensions and the spherically symmetric mag-
netic field (2.15); the analysis can be generalised to
nonconstant magnetic charge distributions, at least
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perturbatively.4 For notational ease, we write the corre-
sponding magnetic monopole algebra (2.1) collectively in
terms of a twisted Poisson bivector θ on phase space P as

fxa; xbg ¼ θabðxÞ ¼
�

0 δij

−δij
eρ
3
εijkxk

�
ð9:1Þ

where xa ¼ ðxi; π̄iÞ with i ¼ 1, 2, 3 and a ¼ 1;…; 6. The
Jacobiator is given by

Πabc ¼ fxa; xb; xcg ¼
�
0 0

0 eρ
3
εijk

�
: ð9:2Þ

Deformation quantization of the twisted Poisson structure
is determined by the bidifferential operator

F ¼ exp

�
−
iℏ
2
θabðxÞ∂a ⊗ ∂b

�
; ð9:3Þ

where ∂a ¼ ∂
∂xa, which defines a star product

f ⋆ g ≔ ·F · ðf ⊗ gÞ ð9:4Þ

that is a noncommutative and nonassociative deformation
of the pointwise product f·g of smooth functions f,
g ∈ C∞ðPÞ. Various useful properties of this nonassocia-
tive star product can be found in [10,11].
For constant monopole density, nonassociativity is con-

trolled by the multiplicative associator

f ⋆ ðg⋆hÞ¼Φððf ⋆ gÞ⋆hÞ
≔⋆exp

�
−
ℏ2

2
Πabc∂a⊗ ∂b⊗∂c

�
ððf⊗ gÞ⊗hÞ:

ð9:5Þ

The twisted coproduct of a vector field X on P is given
by ΔðXÞ ¼ F ðX ⊗ 1þ 1 ⊗ XÞF−1 [11]; it determines the
deformed Leibniz rule

Xðf ⋆ gÞ ¼⋆ ΔðXÞðf ⊗ gÞ: ð9:6Þ

In particular, the twisted coproduct of primitive translation
generators is given by [11]

Δð∂aÞ¼ ∂a ⊗ 1þ1⊗ ∂aþ
iℏ
2
Πa

bc∂b ⊗ ∂c ð9:7Þ

which yields the deformed Leibniz rule

∂aðf ⋆ gÞ ¼ ð∂afÞ ⋆ gþ f ⋆ ð∂agÞ

þ iℏ
2
Πa

bcð∂bfÞ ⋆ ð∂cgÞ: ð9:8Þ

B. Composition product

Recall the composition product ∘ from [11]: For func-
tions f, g, φ ∈ C∞ðPÞ, we define

ðf ∘ gÞ ⋆ φ ≔ f ⋆ ðg ⋆ φÞ: ð9:9Þ

This defines a noncommutative product which is associa-
tive by construction, since by induction we have

ðf1 ∘ f2 ∘ � � � ∘ fnÞ ⋆ φ ¼ f1 ⋆ ðf2 ⋆ ð� � � ⋆ ðfn ⋆ φÞ � � �ÞÞ:
ð9:10Þ

There is further a conjugate composition product f ∘̄ g with
the property ðf ∘ gÞ� ¼ g�∘̄f� [11], but we shall not need it
here. The associativity properties of the star product ⋆ are
completely characterised by the composition products, in
the sense that ⋆ is nonassociative if and only if there exist
functions f, g ∈ C∞ðPÞ such that f ∘ g ∉ C∞ðPÞ, while
noncommutativity of the compositions themselves are
characterized by the commutators ½f; g�∘ ≔ f ∘ g − g ∘ f.
However, not all functions need have this property; for
example, in the case of a constant monopole distribution
xa ∘ xa ¼ xa ⋆ xa ¼ x2a; see [11] for details.
For constant monopole density we can explicitly char-

acterise the subalgebra of differential operators DiffðPÞ
on which the composition products close in terms of the
star product ⋆. For this, we use the definition (9.9) and
the associator relation (9.5) for arbitrary test functions
φ ∈ C∞ðPÞ to find

f ∘g¼f⋆ gþX∞
n¼1

1

n!

�
−
ℏ2

2

�
n
Πa1b1c1 � ��Πanbncn

×ðð∂a1 � � �∂anfÞ⋆ ð∂b1 �� �∂bngÞÞ⋆∂c1 � � �∂cn ð9:11Þ

with ∂a ⋆ φ ≔ ∂aφ. In particular, for the coordinate gen-
erators we find

½xa; xb�∘ ¼ iℏθabðxÞ − ℏ2Πabc∂c: ð9:12Þ

From the deformed Leibniz rule (9.8) and the definition
ð∂a ∘ fÞ ⋆ φ ¼ ∂a ⋆ ðf ⋆ φÞ ≔ ∂aðf ⋆ φÞ we have

4Associative star products quantising the Poisson brackets
corresponding to the field of a Dirac monopole are discussed e.g.,
in [38,40].
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∂a ∘ f ¼ ∂af þ f ⋆ ∂a þ
iℏ
2
Πa

bcð∂bfÞ ⋆ ∂c: ð9:13Þ

The general relations in DiffðPÞ can be obtained as
follows. We can extend the coproduct Δ to arbitrary
differential operators D ¼ P

kda1���akðxÞ∂a1 � � � ∂ak as an
algebra homomorphism with Δð1Þ ¼ 1 ⊗ 1 and use the
usual Sweedler notation (with implicit summation)

ΔðDÞ ≔ Dð1Þ ⊗ Dð2Þ: ð9:14Þ

This encodes the deformed action of D on star products
f ⋆ φ and for any f ∈ C∞ðPÞ we have

D ∘ f ¼ ðDð1Þ · fÞ ⋆ Dð2Þ; ð9:15Þ

while f ∘ D is given by the formula (9.11) with g replaced
by D and the derivatives ∂bi acting on da1���ak . Similarly,
f ∘ ∂b ¼ f ⋆ ∂b and ∂a ∘ ∂b ¼ ∂a ⋆ ∂b so that

½∂a; ∂b�∘ ¼ ½∂a; ∂b�⋆ ¼ 0: ð9:16Þ

In particular, the usual adjoint action of derivatives is
modified by nonassociativity as

½∂a; f�∘ ¼ ∂af þ iℏ
2
Πa

bcð∂bfÞ ⋆ ∂c: ð9:17Þ

By a similar calculation we find

D1 ∘ D2 ¼ ðD1ð1Þ ·D2Þ ⋆ D1ð2Þ ð9:18Þ

for any two differential operators D1, D2 ∈ DiffðPÞ.
In summary, starting from the nonassociative algebra

ðC∞ðPÞ;⋆Þ we have explicitly constructed an associative
algebra ðDiffðPÞ; ∘Þ in which C∞ðPÞ is contained as a
subspace (but not as a subalgebra). Notice that, in contrast
to the ⋆-commutator, the ∘-commutator is a ∘-derivation,

½f; g ∘ h�∘ ¼ ½f; g�∘ ∘ hþ g ∘ ½f; h�∘; ð9:19Þ

and it satisfies the Jacobi identity by virtue of the
associativity of the composition product ∘. It is this feature
which allows for a consistent formulation of quantum
dynamics in the Heisenberg picture of nonassociative
quantum mechanics: For a given Hamiltonian H and an
observable (real function) A on phase space P, time
evolution can be defined with the ∘-commutator as

dA
dt

¼ i
ℏ
½H;A�∘ ð9:20Þ

since then the Leibniz rule consistently implies

dðA ∘ BÞ
dt

¼ dA
dt

∘ B þA ∘ dB
dt

: ð9:21Þ

For example we have

½x2i ;A�∘ ¼ xi ∘ ½xi;A�∘ þ ½xi;A�∘ ∘ xi

¼ −2iℏxi
∂A
∂π̄i ð9:22Þ

since ½xi;A�∘ ¼ −iℏ ∂A
∂π̄i.

C. Symplectic realization

It is now relatively straightforward to see that the
quantization of the symplectic algebra (2.16) agrees
exactly with the quantum ∘-brackets above. By writing
x̃a ¼ ðπ̃i; x̃iÞ and using the generalized Bopp shift of
Appendix A, these Poisson brackets are quantized by the
representation on the original algebra of functions C∞ðPÞ
given via the differential operators

x̂a ¼ xa −
iℏ
2
θabðxÞ∂b and ˆ̃xa ¼ iℏ∂a ð9:23Þ

which satisfy the nonvanishing commutation relations

½x̂a; x̂b� ¼ iℏðθab þ Πabc ˆ̃xcÞ and

½x̂a; ˆ̃xb� ¼ iℏ

�
δab þ

1

2
ð∂bθ

acÞ ˆ̃xc
�
: ð9:24Þ

Hence they reproduce the associative ∘-algebra of differ-
ential operators, and in particular

fðx̂ÞgðxÞ ¼ ðf ∘ gÞðxÞ ð9:25Þ

for functions f, g ∈ C∞ðPÞ. Moreover, as already noted in
[10,11], these Bopp shifts enable a rewriting of the non-
associative star product on functions f, g ∈ C∞ðPÞ with
integrable Fourier transforms as

ðf ⋆ gÞðxÞ¼ fðx̂Þ ·gðxÞ¼
Z

dwf̃ðwÞeiwax̂a ·gðxÞ; ð9:26Þ

where

f̃ðwÞ ¼ 1

ð2πÞ6
Z

dxfðxÞe−iwaxa : ð9:27Þ

Explicitly, the corresponding twisted Bopp shifts

x̂i ¼ xi −
iℏ
2

∂
∂π̄i and ˆ̄πi ¼ π̄i þ

iℏ
2

� ∂
∂xi þ

eρ
3
εijkxk

∂
∂π̄j

�
ð9:28Þ
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satisfy the nonvanishing commutation relations

½x̂i; ˆ̄πj� ¼ ½x̂i; ˆ̃πj� ¼ ½ ˆ̄πi; ˆ̃xj� ¼ iℏδij;

½ ˆ̄πi; ˆ̄πj� ¼
iℏeρ
3

εijkðx̂k − ˆ̃xkÞ;

½ ˆ̄πi; ˆ̃πj� ¼ ½ ˆ̃πi; ˆ̄πj� ¼
iℏeρ
6

εijk ˆ̃x
k; ð9:29Þ

with ˆ̃πi ¼ iℏ ∂
∂xi and ˆ̃xi ¼ iℏ ∂

∂π̄i. Written in this form, the
symplectic algebra is similar to the Lie algebras of
observables in geometric quantization of twisted Poisson
manifolds [41]. For ρ ¼ 0 the differential operators (9.28)
reduce to the usual Bopp shifts of phase space quantum
mechanics [39].
For completeness, we note that the composition products

also follow from deformation quantization of the symplec-
tic algebra (2.16) itself by similarly defining a star product

ðf ⋆̃ gÞðx; x̃Þ ≔ fðx̂; ˆ̃xÞ · gðx; x̃Þ ð9:30Þ

on functions f, g ∈ C∞ðPÞ. For this, let us rewrite the
classical Poisson brackets in terms of a bigger algebra as

fxã; xb̃g ¼ ξã b̃ þ Cã b̃
c̃xc̃; ð9:31Þ

where xã ¼ ðxa; x̃aÞ with ã ¼ 1;…; 12, the nonvanishing
central elements are

ξab ¼ δab and ξx
i;π̄j ¼ δij; ð9:32Þ

and the nonvanishing structure constants are

Cab
c ¼ Πab

c; Cabc ¼ −Πabc and Ca
b
c ¼ −

1

2
Πa

b
c:

ð9:33Þ

We further rewrite these relations in the Lie algebraic form

fx̃ã; x̃b̃g ¼ C̃ã b̃
c̃x̃c̃ ð9:34Þ

where x̃ã ¼ ðxã; κÞ with κ central elements, and the non-
vanishing structure constants are

C̃ã b̃
κ ¼ ξã b̃ and C̃ã b̃

c̃ ¼ Cã b̃
c̃: ð9:35Þ

Now we can apply the polydifferential expansion of [[42],
Eq. (3.4)] (which applies generally to linear Poisson
structures on Rd) to functions f which are independent
of κ, and after setting κ ¼ 1 we arrive at the basic
associative coordinate star products

xã ⋆̃ f ¼ xã·f þ
X∞
n¼1

ð−iℏÞnBn

n!
Cãb̃1

c̃1C
c̃1b̃2

c̃2 � � �Cc̃n−2b̃n−1
c̃n−1

× ðξc̃n−1b̃n þ Cc̃n−1b̃n
c̃nx

c̃nÞ∂ b̃1
� � � ∂ b̃n

f; ð9:36Þ

with Cc̃−2b̃−1
c̃−1 ≔ 1, where Bn are the Bernoulli numbers.
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APPENDIX A: SYMPLECTIC REALIZATIONS
OF QUASI-POISSON STRUCTURES

A symplectic realization of a Poisson structure θ on a
manifold M is a symplectic manifold ðS;ΩÞ together with
a surjective submersion p∶ S → M which preserves the
Poisson structures: p�Ω−1 ¼ θ. It is a fundamental result in
Poisson geometry that any Poisson manifold admits a
symplectic realization. The original local construction for
M ¼ Rd is due to [16]; it proceeds by taking S ¼ T�M to
be the phase space of M, with the canonical projection
p∶ T�M → M, and Ω to be the integrated pullback of the
canonical symplectic structure dpi ∧ dxi on T�M by the
flow of the vector field θijðxÞpi∂j, where ðx; pÞ ∈ T�M ¼
Rd × ðRdÞ�. The early global constructions based on
integrating symplectic groupoids are due to [14,15,17].
The extension to almost symplectic realizations of twisted
Poisson structures is established globally by [43], while
local symplectic realizations of arbitrary quasi-Poisson
structures are constructed by [44,45].
Given an arbitrary bivector Θ ¼ 1

2
ΘijðxÞ∂i ∧ ∂j on a

manifold M of dimension d, the algebra of quasi-Poisson
brackets

fxi; xjg ¼ αΘijðxÞ; ðA1Þ

for local coordinates x ∈ Rd and a deformation parameter
α ∈ R, is bilinear and antisymmetric but does not neces-
sarily satisfy the Jacobi identity. Let
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fxi; xj; xkg ¼ 1

3
ðfxi; fxj; xkgg þ cyclicÞ ¼ α2ΠijkðxÞ

ðA2Þ

be the corresponding Jacobiator Π¼ 1
3!
ΠijkðxÞ∂i∧∂j∧∂k,

where

Πijk ¼ 1

3
ðΘil∂lΘjk þ Θkl∂lΘij þ Θjl∂lΘkiÞ: ðA3Þ

If the bivector Θ is nondegenerate, it is easy to check that

Πijk ¼ 1

3
ΘimΘinΘklτmnl with

τmnl ¼ ∂mΘ−1
nl þ ∂lΘ−1

mn þ ∂nΘ−1
lm ; ðA4Þ

and in this case Θ defines a twisted Poisson bracket with
twisting three-form τ ¼ dΘ−1 on M.
We can “double” the local space to R2d with coordinates

ξμ ¼ ðxi; x̃iÞ for μ ¼ 1;…; 2d and construct a Poisson
bracket

fξμ; ξνg ¼ ΩμνðξÞ ¼ Ωμν
0 þ αΩμν

1 ðξÞ þOðα2Þ ðA5Þ

as a formal power series in the parameter α, where Ωμν
0 is

the canonical symplectic matrix. The Poisson brackets of
the original coordinate functions are then

fxi; xjg ¼ αωijðx; x̃Þ with ωijðx; 0Þ ¼ ΘijðxÞ: ðA6Þ

In particular

ωijðx; x̃Þ ¼ ΘijðxÞ − αΠijkðxÞx̃k þOðα2Þ: ðA7Þ

The expansion may be explicitly constructed by introduc-
ing local Darboux coordinates ημ ¼ ðyi; πiÞ and writing the
generalized Bopp shift

xi ¼ yi −
α

2
ΘijðyÞπj þOðα2Þ and x̃i ¼ πi: ðA8Þ

See [44,45] for further details of this construction.
For the example of the magnetic monopole algebra (2.1),

all higher order corrections vanish and we arrive at the
Poisson brackets

fxi; xjg ¼ αΘijðxÞ − α2Πijkx̃k;

fxi; x̃jg ¼ δij þ
α

2
ð∂jΘikÞx̃k;

fx̃i; x̃jg ¼ 0; ðA9Þ

which for α ¼ 1 coincide with (2.12) and (2.13).

APPENDIX B: DOUBLED HARMONIC
OSCILLATORS

The idea of employing additional d.o.f. for the con-
struction of variational principles for non-Lagrangian
equations of motion appeared for the first time in the
context of the one-dimensional damped harmonic oscillator
with mass m, angular frequency ω and friction parameter λ,
described by the equation of motion

mẍþ λ_xþ ω2x ¼ 0: ðB1Þ

The Lagrangian is postulated to be the product of the
original equation of motion and a Lagrange multiplier x̃, in
the form Ldho ¼ x̃ðmẍþ λ_xþ ω2xÞ, see [46]. Clearly the
variation of this Lagrangian with respect to x̃ yields the
original equation of motion (B1). However, the variation of
Ldho with respect to x gives the equation of motion for an
additional “double” oscillator

m ̈x̃ − λ _̃xþ ω2x̃ ¼ 0; ðB2Þ

which is the time-reversed image of the original oscillator
in the sense that λ → −λ. The total energy of the doubled
system is conserved meaning that the energy dissipated by
the first oscillator (B1) is absorbed by the second oscillator
(B2) which thereby plays the role of an effective reservoir.
For λ ¼ 0 the Hamiltonian reads

Hdho ¼
1

m
pp̃þ ω2xx̃; ðB3Þ

with p ¼ m_x, p̃ ¼ m _̃x and the canonical Poisson brackets
between all variables. It can be represented as

Hdho¼Hþ−H−≔
�

1

2m
p2þþ

ω2

2
x2þ

�
−
�

1

2m
p2
−þ

ω2

2
x2−

�
;

ðB4Þ

where

p� ¼ 1ffiffiffi
2

p ðp� p̃Þ and x� ¼ 1ffiffiffi
2

p ðx� x̃Þ ðB5Þ

defines a canonical transformation of phase space coor-
dinates. The Hamiltonian Hdho is not positive and does not
represent the energy of the doubled oscillator system. The
energy of each subsystem is defined by H� respectively,
while the total energy is determined as Edho ¼ Hþ þH−.
The quantization of this model was discussed in the

context of quantum dissipation, see e.g., [31–34] for early
works. For this, we introduce creation and annihilation
operators by
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â� ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r �
x̂� þ i

mω
p̂�

�
and

â†� ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r �
x̂� −

i
mω

p̂�

�
: ðB6Þ

One easily checks

½â�; â†�� ¼ 1; ðB7Þ

while all other commutators vanish. In terms of the creation
and annihilation operators (B6), the quantum Hamiltonian
corresponding to (B4) becomes

Ĥdho ¼ Ĥþ − Ĥ− ≔ ℏωðâ†þâþ − â†−â− − 1Þ: ðB8Þ

The Hamiltonian (B8) is unbounded, but it can be
expressed as the difference of two Hamiltonians Ĥ� of
harmonic oscillator type, which are bounded from below
and commute, ½Ĥþ; Ĥ−� ¼ 0. The Hamiltonian Ĥdho can be
represented on the two-particle bosonic Fock space F . In
the standard number basis, its eigenstates are given by

jnþ; n−i ¼
ðâ†þÞnþffiffiffiffiffiffiffi

nþ!
p ðâ†−Þn−ffiffiffiffiffiffiffi

n−!
p j0; 0i ðB9Þ

forn�∈N0with corresponding eigenvaluesℏωðnþ−n−−1Þ,
where â†�â�jnþ; n−i ¼ n�jnþ; n−i with âþj0; n−i ¼ 0 ¼
â−jnþ; 0i. In particular, the usual harmonic oscillator
eigenstates and eigenvalues emerge only when one
sets the â−-oscillator in its ground state jnþ; 0i, thereby
turning off the reservoir which is needed only when λ ≠ 0
in order to absorb the energy dissipated by the physical
âþ-oscillator.

APPENDIX C: MAGNETIC DUALITY AND
LOCALLY NONGEOMETRIC FLUXES

Our constructions can also have ramifications for the
phase space structures of locally nongeometric fluxes in
string theory and M-theory. For this, let us write the
symplectic algebra (2.10) as

fxi; πjg ¼ fx̃i; π̃jg ¼ δij;

fπi; πjg ¼ Hijkx̃k;

fπi; π̃jg ¼ fπ̃i; πjg ¼ −
1

2
Hijkxk; ðC1Þ

where generally H ¼ 1
3!
Hijkdxi ∧ dxj ∧ dxk is a constant

three-form on Rd; for the d ¼ 3 example of the spherically
symmetric magnetic field (2.15) considered in the main
text, we take Hijk ¼ − eρ

3
εijk. Now we can adapt the

magnetic duality transformation of order four from [7] to
our situation to get

ðxi; x̃iÞ ↦ ð−πi;−π̃iÞ; ðπi; π̃iÞ ↦ ðxi; x̃iÞ and

Hijk ↦ −Rijk; ðC2Þ

where R ¼ 1
3!
Rijk∂i ∧ ∂j ∧ ∂k is a constant trivector on

Rd; for d ¼ 3 it corresponds to a locally non-geometric flux

Rijk ¼ l3s
3ℏ2 Nεijk in IIA string theory withN units of NS–NS

flux, where ls is the string length. Under this map the
Poisson brackets (C1) become

fxi; πjg ¼ fx̃i; π̃jg ¼ δij;

fxi; xjg ¼ Rijkπ̃k;

fxi; x̃jg ¼ fx̃i; xjg ¼ −
1

2
Rijkπk; ðC3Þ

which we identify as the symplectic realisation of the
nonassociative phase space algebra of closed strings propa-
gating in locally nongeometric flux backgrounds [9,26].
It is tempting in this setting to compare our symplectic

realisation with the perspective of double field theory,
wherein auxiliary winding coordinates are introduced in
order to construct a theory with manifestOðd; dÞ symmetry
(see e.g., [47–49] for reviews). In this case, only after
eliminating the dependence of fields on the winding
coordinates, or more generally by choosing a polarisation
which halves the number of extended space coordinates (by
weak or strong constraints), does one speak of “physical”
coordinates. However, in our case we have seen that there is
no possibility to choose different such “polarisations” to get
to a physical space with a nonassociative algebra that can
be obtained from reduction of our fixed symplectic algebra.
Furthermore, this symplectic algebra is very different from
the double field theory phase space model of [4,26,50],
which still involves a nonassociative algebra, whereas the
complete algebra (C3) is associative.
Our symplectic realization is also useful for further

investigation of the nonassociative phase space algebra
of M2-branes propagating in four-dimensional locally non-
geometric flux backgrounds of M-theory [51,52].5 The
magnetic dual of this configuration was identified by [7] as
the phase space algebra of a non-geometric Kaluza-Klein
monopole in M-theory. As the symplectic realization
provides an explicit globally-defined magnetic vector
potential AIðxIÞ, this may be used to construct this
geometry more precisely as an explicit supergravity
solution.

5In this setting the “quasi-nonassociative” quantum mechanics
of [53] may be relevant for understanding the interplay between
associative and nonassociative structures.
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