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Abstract

We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons (eN interac-
tion) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to � 1015 G
during a time comparable with the ages of young magnetars ∼ 104 yr. The magnetic field instability originates from
the parity violation in the eN interaction entering the generalized Dirac equation for right and left massless electrons
in an external uniform magnetic field. We calculate the averaged electric current given by the solution of the modified
Dirac equation containing an extra current for left and right electrons (positrons), which turns out to be directed along
the magnetic field. Such current includes both a changing chiral imbalance of electrons and the eN potential given
by a constant neutron density in NS. Then we derive the system of the kinetic equations for the chiral imbalance and
the magnetic helicity which accounts for the eN interaction. By solving this system, we show that a sizable chiral
imbalance arising in a neutron protostar due to the Urca-process e−L + p → N + νeL diminishes very rapidly because of
a huge chirality flip rate. Thus the eN term prevails the chiral effect providing a huge growth of the magnetic helicity
and the helical magnetic field.
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1. Introduction

The importance of large-scale magnetic fields for
the matter dynamics in our universe was first under-
stood, among the others, by Alfvén, Biermann, Chan-
drasekhar, and Parker [1]. Most of the visible matter
in the universe is in a plasma state, which is strongly af-
fected by magnetic fields. Nowadays it is commonly be-
lieved that magnetic fields play an important role in the
evolution of various astrophysical objects. A stellar and,
in particular, solar activities result from periodic mag-
netic field variations in stellar convective zones. Galac-
tic magnetic fields, although having a small magnitude
∼ μG, are of a very large scale comparable with galac-
tic radii. Therefore the motion of the interstellar plasma
is driven by a galactic magnetic field. Strong magnetic

Email address: maxdvo@izmiran.ru (Maxim Dvornikov)

field influence the evolution of active galactic nuclei,
quasars, and pulsars.

Some neutron stars (NSs), called magnetars, having
magnetic fields B ∼ 1015 − 1016 G, can be considered
as strongest magnets in our universe [2]. Despite the
existence of various models for the generation of such
strong fields, based, e.g., on the turbulent dynamo [3],
the origin of magnetic fields in magnetars is still an open
problem. Recently, in Ref. [4] the authors tried to apply
the chiral magnetic effect [5, 6], adapted successfully
for the QCD plasma [7], to tackle the problem of mag-
netic fields in magnetars. The approach of Ref. [4] im-
plies the chiral kinetic theory, where Vlasov equation is
modified when adding the Berry curvature term to the
Lorentz force [8].

The fate of such a chiral plasma instability is based
on the Adler anomaly in QED with the nonconserva-
tion of the pseudovector current for massless fermions
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ψ̄γμγ5ψ in external electromagnetic fields. Since this
current is the difference of right jRμ and left jLμ cur-
rents, the assumption of a seed imbalance between their
densities given by the difference of chemical potentials,
(nR − nL) ∼ μ5 = (μR − μL)/2 � 0, where nR,L are the
densities of right and left fermions (electrons) and μR,L
are their chemical potentials, could lead to the magnetic
field instability we study here adding electroweak inter-
actions in the Standard Model (SM).

The same effect (while without weak interactions)
was used in Ref. [9] to study the self-consistent evo-
lution of the magnetic helicity in the hot plasma of the
early Universe driven by the change of the lepton asym-
metry ∼ μ5. In Ref. [9] it was showed that such an
asymmetry diminishes, μ5 → 0, due to the growth of
the chirality flip rate in the cooling universe through
electron-electron (ee) collisions, Γ f ∼ α2

em (me/3T )2,
where αem = e2/4π ≈ 1/137 is the fine structure con-
stant, me is the electron mass, and T is the plasma tem-
perature.

This negative result encouraged the appearance of
Ref. [10], where another mechanism for the generation
of magnetic fields was proposed. It is based on the
parity violation in electroweak plasma resulting in the
nonzero Chern-Simons (CS) term Π2 that enters the an-
tisymmetric part of the photon polarization operator in
plasma of massless particles. Here we adopt the no-
tation for the CS term from Ref. [10]. In Ref. [11],
a similar CS term Π(νl)

2 , based on the neutrino interac-
tions with charged leptons, was calculated. Basing on
this calculation, the magnetic field instability driven by
neutrino asymmetries was revealed. This instability is
implemented in different media such as the hot plasma
of the early universe and a supernova (SN) with a seed
magnetic field.

The amplification of a seed magnetic field during the
SN burst driven by a non-zero electron neutrino asym-
metry Δnνe � 0 which enters the CS term Π(νe)

2 was sug-
gested in Ref. [11] to explain the generation of strongest
magnetic fields in magnetars. Note that after the SN
burst a cooling NS as the corresponding SN remnant
emits equally neutrinos and antineutrinos. Thus, the
neutrino asymmetry vanishes. The inclusion of the elec-
troweak ee-interaction with a stable fraction of degener-
ate electrons ne ≈ const instead of the νe interaction
with vanishing neutrino asymmetry Δnνe → 0 has no
sense since the corresponding parity violating CS term
Π

(ee)
2 tends to zero in the static limit ω → 0 for an elec-

tron gas, Π(ee)
2 → 0, as found in Ref. [12].

In the present work we review the results of Ref. [13]
where the the magnetic field of a magnetar is gener-

ated owing to the magnetic field instability in the elec-
troweak electron-nucleon (eN) interaction. Instead of
the Matsubara technique used in Refs. [11, 12], here
we calculate the total electric current in SM (additive
to the standard ohmic current) solving the Dirac equa-
tion for the massless right and left electrons (positrons)
in a magnetic field.

This paper is organized as follows. First, in Sec. 2,
we find the exact solution of the Dirac equation for a
massless electron interacting with an external magnetic
field and nucleon matter though electroweak forces and
derive the CS term. In Sec. 3, we formulate the kinetics
of the chiral imbalance and the magnetic helicity in the
presence of the potentials of the electroweak interaction.
Then, in Sec. 4, we apply the obtained results for the
description of the magnetic field creation in a magnetar.
Finally, in Sec. 5, we summarize our results.

2. Chern-Simons term in parity violating nuclear
matter

In this section we shall derive the CS term in matter
consisting of electrons and nucleons interacting by par-
ity violating electroweak forces. First we obtain the ex-
act solution of the Dirac equation for an electron in the
external magnetic field and interacting with background
nuclear matter. Then, using this solution, we calculate
the induced electric current along the magnetic field.

We start the derivation of the aforementioned CS term
with solving the Dirac equation for a massless electron
in the magnetic field B = (0, 0, B) accounting for the
electroweak eN interaction in NS. This equation reads
as [
γμ
(
i∂μ + eAμ

)
− γ0 (VLPL + VRPR)

]
ψe = 0, (1)

where γμ =
(
γ0,γ
)

are the Dirac matrices, Aμ =
(0, 0, Bx, 0) is the vector potential, PL,R = (1 ∓ γ5)/2
are the chiral projection operators, γ5 = iγ0γ1γ2γ3, and
e > 0 is the absolute value of the electron charge.

In Eq. (1) we assume that there are no macroscopic
fluid (nucleon) currents in NS. The effective potentials
VL,R in Eq. (1) are given by the SM Lagrangian of the
eN interaction via neutral currents in the Fermi approx-
imation (see, e.g., Ref. [14]),

L =√2GFψ̄eγμ
(
g(e)

L PL + g(e)
R PR

)
ψe

×
[
ψ̄nγ

μψn − (1 − 4ξ)ψ̄pγ
μψp

]
, (2)

where GF ≈ 1.17 × 10−5 GeV−2 is the Fermi constant
g(e)

L = −1/2 + ξ and g(e)
R = ξ are the standard cou-

pling constants in SM with the Weinberg parameter
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ξ = sin2 θW ≈ 0.23, and ψn,p are the neutron and proton
wave functions. We reduced the total eN Lagrangian in
Ref. [14] to Eq. (2) omitting the axial nucleon currents
∼ ψ̄n,pγ

μγ5ψn,p irrelevant to our problem.
Taking the statistical averaging 〈. . . 〉 in Eq. (2) over

the equilibrium (Fermi) distributions of nucleons in a
neutron star and recalling that macroscopic nucleon cur-
rents are absent, i.e. 〈ψ̄n,pγψn,p〉 = 0, we get the follow-
ing definition of VR,L to be used in Eq. (1):

VL = − GF√
2

[
nn − np(1 − 4ξ)

]
(2ξ − 1),

VR = − GF√
2

[
nn − np(1 − 4ξ)

]
2ξ, (3)

where nn,p = 〈ψ†n,pψn,p〉 are the number densities of neu-
trons and protons.

Let us decompose ψe in the chiral projections as ψe =

ψL + ψR, where ψL,R = PL,Rψe. Then, using Eq. (1) we
get that ψL,R = e−iEL,Rt+ipyy+ipzzψL,R(x), where

ψ(n)
L,R(x) =

1

4π
√

EL,R − VL,R

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
EL,R − VL,R ∓ pzun−1

∓i
√

EL,R − VL,R ± pzun

∓√EL,R − VL,R ∓ pzun−1

i
√

EL,R − VL,R ± pzun

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

ψ(0)
L,R(x) =

1

2π
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
u0
0
∓u0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4)

Here ψ(n)
L,R corresponds to n = 1, 2, . . . , ψ(0)

L,R

to n = 0, η =
√

eBx + py/
√

eB, un(η) =

(eB/π)1/4 exp(−η2/2)Hn(η)/
√

2nn!, and Hn(η) is the
Hermite polynomial. The upper signs in Eq. (4) stay
for ψL and the lower ones for ψR. To derive Eq. (4)
we use the γ matrices in the Dirac representation as in
Ref. [15],

γ0 =

(
1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
,

γ5 =

(
0 1
1 0

)
, (5)

where σ are the Pauli matrices.
The energy levels EL,R in Eq. (4) can be obtained

from the following expression:

(
EL,R − VL,R

)2
= p2

z + 2eBn. (6)

The normalization factors in Eq. (4) correspond to
∫ (
ψL,R
)†
npy pz

(
ψL,R
)
n′p′y p′z d3x

= δnn′δ
(
py − p′y

)
δ
(
pz − p′z

)
, (7)

since the chiral projections ψL,R are independent. It
is worth mentioning that a more general solution of
Eq. (1), which accounts for the nonzero electron mass,
was found in Ref. [16].

The spinors in Eq. (4) are then used to calculate the
induced electric current which has a nonzero projec-
tion on the z axis ∼ ψ̄eγ

3ψe. Analogously to Ref. [5]
one shows that the averaged current gets the contribu-
tion from the main Landau level n = 0 only. It should
be noted that massless particles have a strong correla-
tion between their momentum and helicity. Thus, at
n = 0, left electrons have pz > 0, whereas right ones
have pz < 0.

Making the statistical averaging with the Fermi-
Dirac distribution of left and right electrons (positrons)
fe,ē(E) =

[
exp(β(E ∓ μL,R) + 1

]−1, where β = 1/T is
the reciprocal temperature, μL,R are their chemical po-
tentials, and the lower sign stays for positrons, then us-
ing Eq. (6), one obtains the component of the current Jz

along the magnetic field in the form,

Jz =
e2B
4π2

{ ∫ 0

−∞
dpz
[
fe (−pz + VR) − fē (−pz − VR)

]

−
∫ +∞

0
dpz
[
fe (pz + VL) − fē (pz − VL)

] }
. (8)

Basing on Eq. (8) and introducing vector notations, we
derive the averaged induced current in the final form as

J =
2αem

π
(μ5 + V5)B, (9)

which is additive to the ohmic current JOhm in a standard
QED plasma. It should be noted that Eq. (9) is valid for
any electron temperature.

The current in Eq. (9) is proportional to αem and con-
sists of the two parts: the vector term given in QED by
the pseudoscalar coefficient μ5 = (μR − μL)/2 (μ5 →
−μ5 under spatial inversion) and the pseudovector cur-
rent J5 = (2αem/π)V5B = Π(eN)

2 B given in SM by the
scalar factor V5 = (VL − VR)/2. Indeed, after the sta-
tistical avaraging the interaction Lagrangian in Eq. (2)
becomes,

L = 1
2

(VL + VR)ψ̄eγ0ψe +
1
2

(VR − VL)ψ̄eγ0γ5ψe. (10)

The factor ψ̄eγ0γ5ψe, in the parity violation term of
Eq. (10), is the pseudoscalar with respect to the spa-
tial inversion P = P−1 = γ0, since Pγ0γ5P−1 = −γ0γ5.
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Thus V5 should be scalar; cf. Ref. [17]. The true pseu-
doscalar both for P-inversion and Lorentz transforma-
tion should be ψ̄γ5ψ. It should be noted that one looses
the Lorentz invariance in a medium with the selected
reference frame like NS at rest.

The weak interaction coefficient in Eq. (9)

V5 =
GF

2
√

2
[nn − (1 − 4ξ)np], (11)

is of the order V5 ≈ GFnn/2
√

2 = 6 eV in NS with
nn = 1.8 × 1038 cm−3, which corresponds to ρn =

3 × 1014 g · cm−3, since np � nn. On the first sight,
the electromagnetic QED term in the current in Eq. (9),
∼ μ5, seems to be much bigger than the weak one in
Eq. (11). For instance, in Ref. [8] it was assumed that
μ5 ∼ 200 MeV, as expected for the chiral asymmetry
close to the Fermi surface, μ5 ∼ μ. However, we show
below that the latter term remains as a stable source of
the magnetic field instability in NS while the former
one vanishes, μ5 → 0, e.g., for helical magnetic fields
with the maximum helicity contrary to the statement in
Ref. [8] that an imbalance μ5 � 0 could lead to the gen-
eration of strong magnetic fields in magnetars.

3. Kinetics of μ5 and the magnetic helicity in the
presence of V5

In this section we will derive the system of kinetic
equations for the chiral imbalance μ5 and the magnetic
helicity in the presence of the effective potential of the
electroweak interaction V5. In the kinetics of μ5 we ac-
count for the back reaction from the magnetic field.

The evolution of the magnetic field in the presence
of the induced current in Eq. (9), proportional to the
magnetic field, obeys the modified Faraday equation; cf.
Ref. [11]. However, it is more convenient to study the
evolution of the magnetic helicity density

h(t) =
1
V

∫
d3x(A · B), (12)

where A is the 3D vector potential and V is the volume
of space. Defining the helicity density spectrum h(k, t)
as h(t) = ∫ dkh(k, t) and accounting for the induced cur-
rent in Eq. (9), which includes both the chiral imbalance
contribution ∼ μ5 and the electroweak term ∼ V5, we get
the kinetic equation for h(k, t) which is the generaliza-
tion of Eq. (6) in Ref. [9],

∂h(k, t)
∂t

= − 2k2h(k, t)
σcond

+
αem

π

[
k(Δμ + 2V5)
σcond

]
h(k, t). (13)

Here Δμ = μR − μL = 2μ5 and we have just assumed as
in Ref. [9] the maximal helicity field configuration, i.e.
the magnetic energy density reads ρB(t) = ∫ dkρB(k, t) =
(1/2) ∫ dkkh(k, t). It is worth to be mentioned that the
sign of the Δμ term in Eq. (13) is opposite to that in
Ref. [9] since we use the different definition of γ5.

Then we should derive the kinetic equation which
governs the chiral imbalance evolution, which is com-
plementary to Eq. (13). Using Eq. (12) and the Maxwell
equations, we get the helicity density change in the stan-
dard form,

dh(t)
dt
= − 2

V

∫
d3x(E · B). (14)

where E is the electric field. Then, accounting for
the Adler anomaly for the pseudovector current in
electromagnetic fields, ∂μ( jμR − jμL) = ∂μ(ψ̄γμγ5ψ) =
(2αem/π)(E · B), we derive the conservation law involv-
ing h(t) and nR,L,

d
dt

[
nR − nL +

αem

π
h(t)
]
= 0, (15)

which is valid in a QED plasma.
Taking into account that nL,R = μ

3
L,R/3π

2 and assum-
ing that μL ∼ μR ∼ μ, where μ is the chemical poten-
tial of the degenerate electron gas in NS, that is true at
least at the beginning of the imbalance in NS, we get
that nR − nL ≈ 2μ5μ

2/π2. Eventually we obtain from
Eq. (15), using the expression for ∂h(k, t)/∂t in Eq. (13),
the evolution equation for μ5,

dμ5

dt
=
παem

μ2σcond

∫
dk k2h(k, t)

−
[
2α2

emρB(t)
μ2σcond

]
(μ5 + V5) − Γ fμ5. (16)

In Eq. (16) we added the rate of chirality-flip processes,
Γ f 
 (me/μ)2νcoll, given by the Rutherford electron-
proton (ep) collision frequency νcoll = ω

2
p/σcond without

flip. Here ωp = μ
√

4αem/3π is the plasma frequency in
a degenerate ultrarelativistic electron gas and σcond is
the electric conductivity in a degenerate electron-proton
plasma consisting of ultrarelativistic degenerate elec-
trons and non-relativistic degenerate protons. The ef-
fects of both ee collisions and the scattering of electrons
by the neutron magnetic moment are minor. See the
comments on this issue in Ref. [19]. Note that in a de-
generate electron gas νcoll depends on the temperature
T ; cf. Ref. [19]. This is due to the Pauli principle when
all electron states with the momenta 0 ≤ p ≤ μ are busy,
i.e. ep scattering is impossible at T = 0.
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One can see that Eq. (16) is different from the sim-
plified kinetic approach dμ5/dt = Γinstμ5 − Γ fμ5, where
Γinst = α

2
emμ5 is a factor providing the magnetic field

growth, used in Refs. [8, 4]. The first term in the rhs
of Eq. (16) can be really estimated as ∼ α2

emμ
2
5 for all

“equal” parameters μ ∼ μ5 ∼ σcond that is not the case
we rely on. The more important difference is the appear-
ance of the second term ∼ ρB that is the back reaction
from the magnetic field that diminishes an imbalance
μ5.

4. Strong magnetic fields in magnetars

In this section we apply the results of Secs. 2 and 3
to describe the amplification of a seed magnetic field in
NS. We solve the system of kinetic equations with the
initial conditions corresponding to NS. The characteris-
tics of the generated magnetic field resemble those in a
magnetar.

Let us choose the simplest case of the monochromatic
helicity density spectrum h(k, t) = h(t)δ(k − k0) where
we can vary the wave number k0 and the magnetic field
scale ΛB = k−1

0 to find later some critical regimes for
the imbalance evolution μ5(t) through Eq. (16). Using
the dimensionless functionsM(τ) = (αem/πk0)μ5(t) and
H(τ) = (α2

em/2k0μ
2)h(t) which depend on the dimen-

sionless diffusion time τ = (2k2
0/σcond)t we can recast

the self-consistent system of Eqs. (13) and (16) as

dM
dτ
=(1 −M−V)H − GM,

dH
dτ
= − (1 −M−V)H . (17)

Here for fixed V5 = 6 eV the dimensionless param-
eters V = (αem/πk0)V5 and G = (σcond/2k2

0)Γ f =

(2αem/3π) (me/k0)2 are the function of the parameter k0
only. Note that G does not depend on the conductivity
σcond since the rate of the chirality flip can be estimated
as Γ f 
 (me/μ)2 ν

(no flip)
coll where in the magnetohydrody-

namic plasma ν(no flip)
coll = ω2

p/σcond is the ep collision fre-
quency without flip. The dimensionless diffusion time τ
depends on the conductivity found in Ref. [19]

σcond =
1.6 × 1028

(T/108 K)2

( ne

1036 cm−3

)3/2
s−1, (18)

that is valid for cooling NS matter consisting of degen-
erate non-relativistic nucleons and ultrarelativistic de-
generate electrons.

For the magnetic field scale ΛB comparable with the
NS radius RNS = 10 km, or for the small wave number

k0 = 1/RNS = 2 × 10−11 eV, one gets the electroweak
interaction contribution in Eq. (17) as V = 7 × 108

coming from the current in Eq. (9), where we sub-
stitute the small V5 = 6 eV. We choose the initial
chiral imbalance as μ5(0) = 1 MeV � μ, where for
ne = μ

3/3π2 = 1036 cm−3 in Eq. (18) the electron chem-
ical potential equals to μ = 60 MeV. Hence from the
beginning the dimensionless chiral imbalance M(0) =
(αem/πk0)μ5(0) 
 1014 occurs much bigger than the
electroweak term V. On the first glance, such inequal-
ity could be expected comparing electromagnetic and
weak interaction effects, M(0) � V = const. We
assume also the constant temperature in a cooling NS
T = 108 K. Of course, the temperature diminishes dur-
ing cooling of a neutron star, primarily, due to the neu-
trino emission. We know how to manage that in our
scenario varying the conductivity in Eq. (18). Never-
theless, here to match competing mechanisms, the chi-
ral magnetic instability and the novel one caused by the
electroweak eN interaction, we assume for simplicity
that σcond = const. Therefore the electric conductivity
in Eq. (18) is also constant, σcond = 107 MeV.

The dimensionless chirality flip rate

G = 2αem

3π

(
me

k0

)2
= 1030, (19)

is huge for the given small k0 = 2 × 10−14 keV. If we
change me = 511 keV → meff = μ

√
αem/2π [18], the

rate in Eq. (19) would be even bigger diminishing μ5
faster in the first line in Eq. (17). Finally, for the ac-
ceptable initial magnetic field B0 = 1012 G, the initial
helicity density h(0) = B2

0/k0 = 2 × 1013 MeV3 gives
H(0) = (α2

em/2k0μ
2)h(0) = 6 × 1021.

We solved the system of the self-consistent kinetic
equations in Eq. (17) numerically for the adopted V
and G as well as the initial conditions M(0) = 1014

andH(0) = 6×1021 chosen above. In Fig. 1 we plot the
evolution of the chiral imbalanceM(τ). In the inset, one
can see how a large chirality imbalance μ5 ∼ O(MeV)
vanishes owing to the huge chirality flip rate in Eq. (19),
μ5 → 0, during a very short time τ ∼ 10−30 correspond-
ing to t ∼ 10−12 s. In the main plot one finds a sharp
slope forM somewhere at τ ≈ 3×10−8 that corresponds
to the time t ∼ 8000 yr. The obtained critical time is of
the order of young magnetar ages [2]. In Fig. 2 we see
that, at the same time τ ≈ 3×10−8, the magnetic helicity
density H grows on about ten orders of magnitude, that
corresponds to the growth of B =

√
k0h on the five or-

ders of magnitude, just getting B 
 1017 G if we started
from the seed field B0 = 1012 G.

It is interesting to mention that, in Fig. 1, a positive
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Figure 1: The dimensionless chiral imbalance M versus τ. The hori-
zontal axis of the main plot starts at τ � 10−30. The inset shows the
evolution of M in the initial time interval corresponding to τ < 10−30.
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Figure 2: The dimensionless helicity H versus τ.

primeval chirality imbalance, μ5 = (μR − μL)/2 > 0,
which appears, e.g., due to the direct Urca process,
e−L + p → n + νeL, becomes negative, μR − μL < 0.
This happens due the simultaneous growth of the he-
licity density h (see in Fig. 2) that amplifies the neg-
ative derivative dM/dτ < 0 much more intensively
than the chirality flip ∼ G. Vice versa, the attenuation
of M owing to the chirality flip is more important at
the first stage illustrated in the inset of Fig. 1. Since
M→ −V = 7× 108 (μ5 → −6 eV, see in Fig. 2), while
the decreasing sum V +M remains positive, the value
of the positive derivative dH/dτ > 0 diminishes, or the
helicity evolution simulates a saturation, see in Eq. (17)
and in Fig. 2.

Finally we notice that rather helical magnetic fields
determine the evolution of the chiral imbalance μ5(t)
than a non-zero seed μ5 � 0 leads to the growth of

the magnetic helicity density h = B2/k0 or the mag-
netic field itself. This imbalance starting from a sizable
value μ5 ∼ O(MeV) decreases down to the eN interac-
tion term |μ5| ∼ V5 ∼ 6 eV. We stress that namely the
electroweak interaction term V5 > |μ5| drives the am-
plification of the seed magnetic field in NS, see in the
second line in Eq. (17). If one takes into account the
cooling of a neutron star, dT/dt < 0, a more realistic
model to generate strong magnetic fields in magnetars
can be developed. We plan to do that in our future work.

Of course, we considered here only the largest scale
k−1

0 = RNS = 10 km as the most interesting case for
magnetic fields in NS. Our model is simplified both
due to the choice of the maximum helicity density
kh(k, t) = 2ρB(k, t) instead of the more general inequal-
ity kh(k, t) ≤ 2ρB(k, t) [20], and owing to the choice of
the monochromatic helicity density spectrum h(k, t) =
h(t)δ(k − k0). The generalization of our model, e.g., ac-
counting for an initially non-helical magnetic field, the
continuous magnetic energy spectrum, complicates the
problem. This requires to solve the system of kinetic
equations for the magnetic helicity density and mag-
netic energy density instead of the single Eq. (13) here.
We skip also the stage of a supernova collapse with non-
equilibrium processes on that time, considering in our
model mostly long time intervals ∼ (103 − 104) yr for a
thermally relaxed NS core.

We would like to mention that recently, in Ref. [21],
the application of the chiral plasma instability in SN was
also criticized because the chirality flip was underesti-
mated in Ref. [4] in the approximation (me/μ)2 � 1. In-
stead of a tedious calculation made in Ref. [21], we can
reproduce in a simpler way the flip rate Γ f obtained by
the authors in Ref. [4] and demonstrate why their deriva-
tion is invalid. Indeed, in Ref. [4] the authors incorrectly
relied on the flip rate Γ f ∼ α2

em (me/μ)2 μ5 meaning
rather that the collision frequency without flip, entering
the flip rate as Γ f = (me/μ)2ν

(no flip)
coll , is given by the com-

mon formula ν(no flip)
coll = σne 


(
α2

em/μ
2
)
μ3 = α2

emμ5.
Here it was assumed that μ ∼ μ5, using the electron
density ne ∼ μ3 and the Rutherford cross-section for ep
collisions σ ∼ α2

em/〈E〉2, where 〈E〉 ∼ μ is the mean
electron energy. Such estimate of the flip rate Γ f is in-
correct for a degenerate electron gas because the Pauli
principle was not taken into account.

5. Conclusion

To resume we have suggested here a novel mecha-
nism for the magnetic field amplification in NS based
on the eN electroweak interaction. For this purpose, in
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Eq. (9), we have generalized the CS term, derived in
Ref. [5], to include the electroweak interaction of right
and left ultrarelativistic degenerate electrons with nu-
cleons. Then, in Eqs. (13) and (16), we have obtained
the new system of kinetic equations for the evolution
of the chiral imbalance and the magnetic helicity. This
system accounts for the eN interaction and the back re-
action. Finally we have applied our results to predict
the magnetic field growth in NS up to values observed
in magnetars.

It should be noted that our model is absolutely dif-
ferent from the well-known approach put forward in
Ref. [3] based on a strong turbulent convection in the
core of SN and the fast dynamo operating only for a few
seconds, being driven by the high neutrino luminosity
Lν > 1052 erg · s−1 at that time. It should be noted that,
in Ref. [22], it was found that protostars, which were
progenitors to some magnetars, did not seem to reveal a
fast rotation as required in Ref. [3]. We also refute the
arguments in Ref. [4] suggested to explain the genera-
tion of strong magnetic fields in magnetars based on the
chiral magnetic instability.
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