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We propose a nonce misuse-resistant message authentication scheme called EHE 
(Encrypt-Hash-Encrypt). In EHE, a message-dependent polynomial is evaluated at 
the point which is an encrypted nonce. The resulting polynomial hash value is en
crypted again and becomes an authentication tag. We prove the prf-security of the 
EHE scheme and extend it to two authenticated encryption modes which follow the 
“encrypt-then-authenticate” paradigm.
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Introduction
Let F be a finite field of N ^  1 elements. Polynomial hashing over F is defined as 

follows. A message X  to be hashed is transformed into a polynomial f x  (A) E F[A], this 
polynomial is evaluated at some point H E F, the result of evaluation becomes a hash 
value of X . Further we suppose that the polynomial f x  has positive degree, its constant 
term equals 0, different messages are transformed into different polynomials. Usually the 
message X  is divided into blocks which determine the coefficients of f x . The shorter X , 
the lower the degree of f X . Let messages be rather short and deg f X ^ d ^  N.

If H is chosen uniformly at random from F, then the hash values of different messages X  
and X' coincide with only small probability:

d
P{ fx (H ) =  f x ( H ) }  =  P{ H is a root of fx  -  f x }  ^ N  (1)

This simple fact supports security of message authentication schemes based on polynomial 
hashing. Possibly the most well-known scheme of this type was proposed by M. Wegman 
and J. Carter in [1] and refined by V. Shoup in [2]. Following [3], we call it WCS, by the 
first letters of the authors' names.

The WCS scheme was successfully used in GCM, a widely deployed authenticated 
encryption (AE) mode. GCM was introduced in [4] and standardized in [5]. Recall that 
an AE mode augments an authentication scheme with encryption one.

Describe WCS with inessential simplifications. The point H becomes a random secret 
key. The additional key is a random permutation n acting on F. An authentication tag T 
(a key-dependent hash value) of X  is calculated using a unique nonce S E F as follows:

T =  fx  (H ) +  n(S).



To instantiate WCS, n is usually chosen as an encryption permutation of some block cipher 
and H is usually a result of encryption of a fixed element c E F using n. This is how WCS 
is instantiated in GCM.

The uniqueness of nonces is essential. Indeed, if the tags T =  f x (H ) +  n(S) and T' =  
=  fx' (H ) +  n(S') are calculated with X  =  X ' but S =  S', then an adversary can effectively 
determine H as one of the roots of the polynomial equation f x  (H ) — f x ' (H ) =  T — T'. 
After determining H , the adversary finds n(S ) =  T — f x (H ) and then can calculate the 
tag T" =  f x '' (H ) +  n (S ) of any X ''.

The described situation, the significant loss of security after some event, we call the 
security collapse. Message authentication schemes collapse in different ways. For example, 
in the schemes of type CBC-MAC (see, for example, [6]) an internal collision, which occurs 
after processing about л/N  message blocks, allows to perform a selective forgery, that is, 
to forge tags of special messages. For comparison, WCS collapses much more seriously: 
universal forgery after only a single nonce repetition.

In the mentioned standard [5] nonce repetition is considered as misuse of GCM. 
The standard proposes to solve the misuse problem at the cryptoengineering layer. But it 
is preferable to solve such problems cryptographically, by designing authentication schemes 
or AE modes which security does not collapse so much after nonce repetition. Such schemes 
and modes are called nonce misuse-resistant.

The GCM mode follows the “encrypt-then-authenticate” paradigm. In this paradigm the 
nonce misuse-sensitive scheme WCS cannot provide misuse-resistance of the whole mode. 
Resistance appears if we turn the paradigm into “authenticate-then-encrypt” keeping WCS. 
This approach was successfully implemented in the GCM-SIV mode [7]. Unfortunately, due 
to the paradigm shift, GCM-SIV requires an additional pass over the protected data.

In this paper we propose another approach: strengthening the basic message 
authentication scheme. In Section 1 we introduce a nonce misuse-resistant scheme called 
EHE. We justify its security and then, in Section 2, discuss details of its instantiation based 
on a block cipher. In Section 3 we extend EHE to AE modes which preserve the “encrypt- 
then-authenticate” paradigm. We denote these modes as AE[EHE]. Note that the first mode 
was standardized in [8] under the name belt-datawrap. We accompanied it with a rather 
cumbersome proof of security. In this paper the proof is drastically simplified.

1. The EHE scheme
In the proposed EHE scheme, a key is a pair of permutations n1 and n2 acting on F. 

A message X  to be authenticated is represented by a polynomial fx  which satisfies the 
previous restrictions. A tag T is calculated using a nonce S E F as a value of the following 
function:

<d[n1,n2](X, S) =  n2(fx (n1(S ))).
In this function we start with the permutation n1, continue with polynomial hashing and 
finish with the permutation n2. The permutations mean block encryption, so we deal with 
the Encrypt-Hash-Encrypt cascade or EHE in short.

In contrast to WCS, the polynomials f x  are evaluated not in a fixed point H =  n(c) 
but generally in different points H =  n1(S). It is well known (see, for example, [9, 
Theorem 6.13]) that the polynomial g(\,X) =  f x (A) — f x (A') E F[A, A'] has at most 
degg ■ N  =  max(deg f x , deg f x ')N  roots in F2. Therefore, for independent random H , H', 
each uniformly distributed over F, and for arbitrary messages X , X ' it holds that

nr* rm  * rzr'M /  max(deg f x , deg f x ')N  /  d p{ j x (H) =  Jx' (H )}  A ---------------EE--------------  A wr.



This bound forms the basis of our security proofs of EHE. More precisely, we use the slightly 
stronger bound:

d
P r| /x (H ) =  f x .(H ') | H =  H '}  ^ - .  (2)

It followed from the fact that the polynomial g(X, X') has at most d(N — 1) roots (H, H') such 
that H =  H'. Indeed, the substitution X' =  X +  g transforms д into a polynomial g'(X,g). 
A  number of the suitable roots of д is the number of roots of д' with a nonzero last 
coordinate. This coordinate can be chosen in N — 1 ways. Each choice g =  c yields the 
univariate polynomial g'(X,c) which has at most d roots.

Let us justify the prf-security of EHE, that is, the indistinguishability of д [ п , n2] from 
a truly random (ideal) message authentication function. The indistinguishability means 
that ^[ffi,n2] is pseudorandom (it “looks” like random) or prf in short. Let an adversary 
(a probabilistic algorithm) have access to a message authentication oracle G which on 
a query (X, S) gives a response T . The oracle implements either the function ^[n1,n2] 
(a real implementation) or a truly random function p (an ideal implementation). In the 
real implementation, the permutations n1, n2 are chosen independently uniformly at 
random from the set of all permutations on F. In the ideal implementation, the oracle, 
given a new query, chooses a response T uniformly at random from F independently of 
previous responses. The adversary can make arbitrary queries, can collect and analyze 
the corresponding responses. Its task is to determine which function G implements. 
The adversary returns 1 if it is p[n1 , n2], or 0 if it is p. Let AG be the output of A.

The quality of A ’s distinguishing capabilities is characterized by the advantage

AdvErHfE(A) =  | P{ A ^ ’П21 =  1} — P{A P =  1}|.

The probabilities here are over the random tape of A and over the random choice of n1, n2 
and p. If AdvErHE(A) is small then the adversary is hard to distinguish р[ж1, ,к2\ from p.

Theorem 1. Let EHE be built over a field of N elements. Let an adversary A make 
at most q queries (X, S ) and messages X  in these queries be such that deg / X ^ d. Then

A d v EHE(A) ^
q(q — 1)d

2N

Proof. Let (X 1, S1) , . . . ,  (Xq, Sq) be different queries and T1, ... ,Tq be different 
elements of F (potential responses). It is sufficient to prove that

p =  P{^[ffb ff2](Xj, Si) =  Ti: i 1,. . . , q} >
1

(1 — £ ) £ q(q — 1)(d — !)
2N

Indeed, then using the H-coefficients technique [10] or, more precisely, Theorem 1 from [11] 
we obtain

A d vEHE(A) ^
q(q — !)

2N +  £ q(q — 1)d
2N

1

Let H  =  n1(Si) and Yj =  /Xi(Hi), i =  1 ,.. . ,q. Introduce the event D1 that all Yj are 
distinct and the event D2 that n2(Yj) =  Ti for each i. Let us estimate the probabilities P{D1} 
and P{D2 | D1} . They are correspondingly determined by the random choice of n1 and n2. 

The estimates (1), (2) imply

P{Yi =  Yj} P{/Xi (n1(Sj)) =  /Xj (n1(Sj))}  =  P{/Xi (Hj)
d

/Xj (Hj )}  ^ N



regardless of whether Si and Sj coincide or not. Indeed, if Si =  Sj then Hi =  Hj is uniformly 
distrubuted over F and (1) works. If Si =  Sj then (Hi,H j) is uniformly distributed over 
F2 \ {(a ,a ): a E F } and (2) works. In whole,

P {D i} ^ 1 -  E  P {Y  =  Yj} ^ 1
iyi<jyq

q(q -  1)d
2 N

Denote by N [q] the qth factorial power of N:

N [q] =  N (N -  1 ) .. .  (N  -  q +  1) =  N q П 1 -  ^ N q 1 -
q 1 d i \ , , T„ Л q(q -  1)
i=0

We have

and

P{D2 | D i}

1

1 1
^ ww 1 +

P ^ P{D2 |Di} P {D i} ^ —  ( 1 +

N [q] N q

q(q -  1)

N 

q(q -  !)
2N

2N

Л . q(q -  1Л  Л q(q -  1)A  ^ 1 (1 ^
Р  +  ' - й Н  1 S N (1 -  ?)

which was to be proved. ■

The theorem implies that the EHE authentication remains prf-secure as long as the 
number of messages processed by a single key is well below \JN/d. The prf-security is 
the strongest property of the message authentication schemes. In particular, it implies the 
security against forgery attacks. In these attacks an adversary interacts with G =  ^[ni ,n2] 
making arbitrary queries and getting corresponding responses. The adversary's aim is to 
predict a response to a query that has not been made yet.

Both permutations ni and n2 in EHE are necessary. Confirm this fact in the context 
of the forgery attacks. If ni is omitted, then an adversary can effectively find different 
messages X  and X ' with the same hash values f X (S) and f X' (S). Then using a tag T =  
=  n2 ( fX (S)) of X  the adversary determines the tag T  =  T of X ' without a query. If n2 
is omitted, then an adversary finds H =  ni (S) from T =  f X (H ) and determines the 
tag T  =  f X/ (H ) of arbitrary X ', again without a query.

The theorem means that EHE preserves security even if nonces repeat. In principle, 
EHE can be used with a fixed nonce S =  c. But in this case the security is collapsed in 
the following sense. As soon as an adversary finds a collision of tags T and T  of different 
messages X  and X ', it obtains the polynomial equation f X (H ) =  f X/ (H ) in H =  ni (c). After 
determining H , the adversary constructs a new message X "  such that f X« (H ) =  f X (H ) 
and determines its tag T" =  T without a query. Note that the collision T =  T  is expected 
to occur and EHE is expected to collapse after about л/N  queries to the authentication 
oracle. This fact does not contradict to the bound of the theorem.

To determine H the adversary first finds roots of the polynomial f X (A) -  f X/ (A) (let 
us ignore the time required) and then checks each of them to localize the right one. To 
check a root it is necessary to make a special query, for example, (X " ,S ). Let M  be the 
number of different roots. If M  is large, then the number of check queries is large too. But 
if M  is small, then the collision probability M /N  is small too. Therefore, regardless of M, 
check-time to collision-probability ratio for the pair (X, X ') is of order N.

The situation changes drastically if nonces do not repeat. In this case the collision T =  T ' 
means that (H, H') is a root of the bivariate polynomial g(A,A') =  f X (A) -  f X (A'). Let g



M
have M  different roots. There are at least —г different coordinates of these roots and time

2d
M M

to check is of lower order — . The collision occurs with the probability ------r andd N (N — 1)
N 2

check-time to collision-probability ratio of the pair (X ,X ') is of lower order ——, that is, it
d

dramatically increases comparing to the previous situation.

2. Instantiation
Instead of two secret permutations it is convenient to use only one, say n, and derive n1 

and n2 from it. We are interested in two variants (instantiation templates) of such deriving: 
(nb ff2) =  (n,n) and (п ,п 2) =  (n2,n). The first template is clearly natural, the second one 
will be used in the following section while extending EHE to AE[EHE]. Let, as usual, n be 
chosen uniformly at random from the set of all permutations on F.

Theorem 2. Let EHE be built over a field of N elements with (ni,n2) =  (n,n). Let 
an adversary A make at most q queries (X, S) and messages X  in these queries be such 
that deg f x  ^ d. Then

q(3q — 1)d
AdvEHE(A) ^ 2N

Proof. Modify the previous proof. Let the event D 1 suppress not only the collisions
Yi Yj but also the collisions Yi Sj and Ti Hj. Additional restrictions mean that
every pair (Yi,Ti) is fresh, that is, n2 can map Yi to Ti despite the facts that Hj =  n1(Sj)
and n1 =  n2.

There are q2 additional collisions of each type, their probabilities are

d
P{Yi =  Sj} =  P{fx(ni(Si)) =  Sj} =  P{ni(Si) is a root of f x  — Sj} ^ -

N

In whole,

P{Ti =  H j} =  P{ni (Sj ) =  Ti} =  N .

n m  , s  , q(q — 1)d q2d q2 _  , q(3q — 1)d + 2q2
P {D l} S 1 — — ~N — N  =  1 2N '

The event D 1 fixes no more than q different pairs (a preimage Si , an image Hi) of n1 =  n. 
So there are at least (N — q)[q] ways to determine images of п2 =  n for the q additional 
preimages Y1, ... ,Yq and only one of these ways is suitable, that is, T1, ... ,Tq. Repeating 
the estimation technique of the previous proof, we obtain

P{D2 | D 1} ^
1

(N — q)[q̂  Nq
> ± b  +  «<3q — 1)

2N

Combining the bounds on P {D 1} and P{D 2 | D 1} completes the proof. ■

The permutation n can be interpreted as an ideal implementation of a block encryption 
oracle E . It is an internal oracle of EHE to which A does not have a direct access. A real 
implementation of E is a permutation FK uniformly at random chosen from a family F 
of permutations acting on F. This family is called a block cipher. The index K  above is a 
random key of this cipher. Let EHE[F] be the EHE scheme with the described instantiation 
of E.



The advantage of A against EHE[F] is defined and estimated in the following way:

AdvErH'E|F|(A ) =  | P{A f|FkFk 1 =  1} -  P {A p =  1}| «

^ AdvErHE(A) +  | P {A »|Fk FkI =  1} -  P {A »1*’*1 =  1}|.

The last summand characterizes the quality of distinguishing of E , that is, differentiating 
between its real implementation FK and its ideal implementation n. The advantage of an 
adversary B which distinguish E is defined similar to the advantage of A:

AdvFrp(B) =  |P{BFk =  1} -  P {B n =  1}| .

Let AdvFrp(t, q) be the maximum of AdvFrp(B ) over all B which run in time at most t and 
make at most q queries to E .

The adversary B can use A to distinguish E. To do this, B simulates the oracle 
G =  <^[E,E] which responses E (fX(E(S ))) to (X, S) the adversary determines making two 
queries to E and one polynomial hashing. The adversary B grants A access to the simulated 
oracle, waits for the output from A and returns this output as its own. The simulation of G 
needs q* =  2q queries to E and time t* =  O(qd).

If A runs in time t, then

| p { a [̂Fk,Fk 1 =  1} -  p {A F[n’n| =  1}| =  AdvFrp(B) ^ AdvFrp(q*,t + 1*) 

and, in whole,
AdvErfE[F|(A) ^ AdvErfE(A) +  AdvFrp(q V  + 1*) .

The arguments above are standard in provable security. The last estimate can be used 
to continue all our further theorems. In such a continuation one should only refine q* (the 
total number of A's indirect queries to the internal oracle E ) and t* (time to simulate G 
over E).

3. The AE[EHE] modes
The permutation n can be used not only to instantiate EHE, but also to manage 

encryption, that is, to extend EHE to AE[EHE]. In this section we provide two modes 
of authenticated encryption based on EHE. In both modes plaintexts and ciphertexts are 
considered as words in the alphabet F.

A plaintext is encrypted in the counter mode using a full-cycle permutation next acting 
on F. A nonce S is used to calculate H =  n (S) and then the sequence C1 =  next(H ), 
C2 =  next(Ci) =  next2(H ) , . . .  of counters. The encrypted counters Гк =  n(Ck) are 
added to the plaintext symbols during encryption or subtracted from the ciphertext symbols 
during decryption. An adversary can get n(Ck) (it can subtract a known plaintext from an 
intersected ciphertext) but not Ck.

The obtained ciphertext and arbitrary additional data form a message X  which is 
authenticated using EHE. Since deg f X ^ d, the length of the plaintext cannot exceed d 
and at most d symbols Гк are sufficient for encryption.

We cannot justify the security of AE[EHE] in the general case if the template (n1, n2) =  
=  (n,n) is used. It is due to possible similarities between f X and nextk. For example, 
if f X and nextk act identically, then an adversary can predict T =  n (fX (n(S))) using 
Гк =  n(nextk(n(S))) =  T . We should either impose restrictions on next or change the 
template.



Start with the second option. The simplest suitable template is (n1,'K2) =  (n2,n). 
It separates a preimage n2(S) of f X from a preimage n(S) of nextk and makes similarities 
between f X and nextk ineffective. The whole AE[EHE] mode with the new template can 
be depicted as follows:

S

Z  Ci next next next------7 C2 1------- 7 C3 I------- 7 . . .

H Г1 Г2 Г3

fx
ж
Y

T

Theorem 3. Let EHE be built over a field of N  elements with (n1,n2) =  (n2,n). Let 
an adversary A make at most q queries (X, S) and messages X  in these queries be such 
that deg f X ^ d. Let the adversary in addition to each response T receive at most d first 
elements of the sequence

Г1 =  n(next(n(S))), Г2 =  n(next2(n (S ))) ,.. .

and let r be the total number of such elements. Then

AdvEHE(A) ^
q(5q +  2r — 1)d

2N

Proof. Again modify the previous proof. Let Zj =  n(Sj), Hi =  n(Zj), Cj,k =  nextk(Zj), 
Гj,k =  n(Ci,k). In the event D 1 suppress the following collisions:

Collisions Quantity Probability (upper bound)
Yi =  Yj q(q — 1)/2 d/N
Yi = Sj q2 d/N
Yi =  Zj q2 d/N

Yi =  Cjtk qr d/N
Ti =  Zj q2 1/N
Ti = Hj q2 1/N
Ti = Г j,k qr 1/N

These restrictions guarantee the freshness of the pairs (Yj,Ti). Processing the last two 
columns of the table, we obtain

P{D1} ^ 1
q(5q +  2r — 1)d +  4q2 +  2qr

2N



The event D i fixes at most 2q+r different images of n. Hence there are at least (N — 2q — r ) [q] 
ways to determine q additional images which correspond to the preimages Y i,...  ,Yq and 
only one of these ways is suitable. In result,

P {D  | D i} ^
1

(N — 2 q — r)[ql
1> —  

Nq
. +  q(5q +  2r -  1) 

+  2 N

Repeating the estimation technique of the previous proof, we get the result required. ■

The instantiation template (ni ,n2) =  (n,n) is preferable than (ni ,n2) =  (n2,n) because 
it requires one less encryption. As we said before, to securely use the template (ni ,n2) =  
=  (n, n), it is necessary to impose restrictions on next. These restrictions should impede the 
collisions of the form f X (H) =  nextk(H') or even the form f X (H) =  nextk(H '), H =  H '.

In this connection, call the permutation next (d, 5)-uniform,, if for any suitable f X 
with d egfX ^ d and each k =  1 ,... ,d it holds that

7 C

P {fx (H ) =  nextk(H )}, P {fx (H ) =  nextk(H') | H =  H '} ^ - .

Here H and H' are independent random, each uniformly distributed over F.
Example. Consider an affine permutation a f f : H m  aH  +  в , а, в G F \ {0 }. If a is 

the multiplicative unit of F, then a ff  is (d, 1)-uniform, the best we can get, but it is a full- 
cycle only if F is prime. For arbitrary F the permutation a ff  turns into an almost-full-cycle 
if a is primitive. Indeed, in this case a ff  decomposes into a cycle of length N — 1 and a 
fixed point в /(1  — a). The probability to fall into the sole fixed point during encryption is 
negligible and a ff  can be used in the counter mode without meaningful loss of security.

Theorem 4. Let EHE be built over a field of N elements with (ni ,n2) =  (n,n). Let 
an adversary A make at most q queries (X, S) and messages X  in these queries be such 
that deg f X ^ d. Let the adversary in addition to each response T receive at most d first 
elements of the sequence Г1 =  n(next(n(S))), Г2 =  n(next2(n(S))), . . .  and let r be the 
total number of such elements. Let next be (d, 5)-uniform. Then

AdvEHE(A) ^
q(3q +  2r5 — 1)d

2N

Proof. Modify the proof of Theorem 2. Let Ci,k =  nextk(Hj), R ,k =  n(Ci,k). In the 
event D i suppress the following collisions:

Collisions Quantity Probability (upper bound)
Yi = Yj q(q — 1)/ 2 d/N
Yi = Sj q2 d/N
Yi = Cj-fc qr d,S/N
Ti  = Hj q2 1/N
Ti  = Г j , k qr 1/N

The result required follows from the estimates:

P {D i} ^ 1 —

P{D2 | D i} ^

q(3q +  2r5 — 1)d +  2q2 +  2qr
2N ,

1 ^ —  Л  +  q (3 q+ 2r — 1)
(N — q — r)[ql ^ N q 2N

The theorem is proved. ■



To fully justify the security of the proposed AE[EHE] modes we need to show that it 
is hard to distinguish from random not only the tags T but also the symbols Гк (provided 
that the nonces S do not repeat). Technically, it can be quite easily done by rebuilding the 
proofs of Theorems 3 and 4. We leave such rebuilding outside the scope of this paper.
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