2018

Математика и механика

№ 51

УДК 512.541.6 DOI 10.17223/19988621/51/2 MSC 20K10

Peter V. Danchev

A NOTE ON ESSENTIALLY INDECOMPOSABLE *n*-SUMMABLE ABELIAN *p*-GROUPS

For each natural *n* we prove that there exists an unbounded *n*-summable abelian *p*-group which is essentially indecomposable. This example parallels a well-known result of this kind established for separable abelian *p*-groups.

Keywords: summable groups, essentially indecomposable groups, admissible Ulm functions, direct sums of countable groups.

0. Introduction and Fundamentals

Without any exceptions, the term "group" will mean an abelian *p*-group, where *p* is a prime fixed for the duration of the paper. Our terminology and notation will be based upon [1]. In particular, if *G* is a group and α is an arbitrary ordinal, then $p^{\alpha}G = \{x \in G : ht_G(x) \ge \alpha\}$, and we shall say *G* is *separable* if $p^{\omega}G = \{0\}$. Likewise, for every positive integer *n*, the symbol $G[p^n] = \{g \in G : p^ng = 0\}$ denotes the p^n socle of *G* which can be viewed as a valuated group by consulting with [2]. About the notions of valuated p^n -socles, valuated groups and their closely related specifications, we refer the interested reader to [2] and [3].

The other specific concepts will be defined below explicitly as follows:

• Mimicking [2], a group G is said to be *n*-summable if $G[p^n]$ decomposes as (is isometric to) the valuated direct sum of a collection of countable valuated groups (each of which will also be a valuated p^n -socle).

Naturally, a group *G* is *n*-summable if $G[p^n]$ is *n*-summable as a valuated p^n -socle. Note that an *n*-summable group has to be summable (since a countable valuated vector space is necessarily free), and so $p^{\omega_1}G = \{0\}$ (see, e.g., Theorem 84.3 of [1]). In [3] was constructed for any natural *n* an *n*-summable group *G* which need *not* be *n*+1-summable such that $G/p^{\alpha}G$ is a direct sum of countable groups for all $\alpha < \omega_1$; thus this *G* is *not* a direct sum of countable groups.

• (Folklore) A group Z is said to be *essentially indecomposable* if whenever $Z \cong X \oplus Y$ for some groups X and Y, then either X or Y is bounded.

• Imitating [3], the function $f: \omega_1 \to C$ is called *n-realizable*, provided $f = f_V$ for some *n*-summable valuated p^n -socle V, where f_V designates the Ulm function of V. In particular, considering groups, $f = f_G$ for some *n*-summable group G, where $V = G[p^n]$.

• Imitating [3], the function $f: \omega_1 \to C$ is called *n*-admissible, provided it is *n*-closed and either uncountably unbounded or *n*-small and, in addition, for every pair of countable ordinals $\beta < \gamma$ with limit γ , the inequality $\sum_{n=1}^{\infty} f < (\sum_{n=1}^{\infty} f)^{\infty_0}$ holds

$$\sum_{[\gamma+n-1,\gamma+\omega)} f \leq \left(\sum_{[\beta,\gamma)} f\right)^{1/0} \text{ holds.}$$

It can be proved that a function $f: \omega_1 \to C$ is *n*-admissible if, and only if, it is *n*-realizable (cf. [3]).

The motivation for writing this short article is to promote some new ideas concerning certain indecomposable properties of *n*-summable groups related to valuated groups and valuated p^n -socles (see, for more account, [4] and [5] too).

1. Examples and Assertions

If A is any separable group, B is a basic subgroup of A and $G = A/B[p^n]$, then the purity of B in A implies that there is an isomorphism

$$G[p^n] \cong \left(A[p^n] / B[p^n] \right) \oplus \left(B[p^{2n}] / B[p^n] \right).$$

Because *B* is ω -dense in *A*, it follows that the first term in this sum is $p^{\omega}G$. Considering multiplication by $p^n : B \to p^n B$, it follows that the second term is isometric to $p^n B[p^n]$ using the regular height function. It follows that $G[p^n]$ is *n*-summable and hence *G* is *n*-summable appealing to [2]. Note also that the isomorphism $G/p^{\omega}G \cong p^n A$ holds.

An example of an essentially indecomposable separable group Z can be constructed using Corollary 76.4 of [1]. So, we come to the following:

Example 1.1 There is an n-summable group G that is essentially indecomposable.

Proof: If Z is a separable essentially indecomposable group and A is a separable group such that $p^n A \cong Z$, then let B be a basic subgroup of A and let $G = A/B[p^n]$, so that $G[p^n]$ is n-summable. If $G \cong X \oplus Y$, then

$$Z \cong p^{n} A \cong G / p^{\omega} G \cong \left(X / p^{\omega} X \right) \oplus \left(Y / p^{\omega} Y \right).$$

Therefore, either $(X/p^{\omega}X)$ or else $(Y/p^{\omega}Y)$ is bounded, so that either X or Y is bounded, which implies that G is also essentially indecomposable.

In other words, a group can have only inessential decompositions and still have a p^n -socle which splits into an infinite number of countable valuated summands.

In spite of the parallel between direct sums of countable groups and ω_1 -bounded *n*-summable valuated p^n -socles, there are many *n*-summable groups that are not direct sums of countable groups. In fact, we have the following construction:

Example 1.2. Any *n*-summable group *G* is a summand of a group with an admissible Ulm function that is not a direct sum of countable groups.

Proof: We can construct a direct sum of countable groups H which is large enough so that the Ulm function of $T = G \oplus H$ is admissible. This means that there is a direct

sum of countable groups T' such that T and T' have the same Ulm functions. Since both $T[p^n]$ and $T'[p^n]$ are *n*-summable, they are isometric. On the other hand, T is not a direct sum of countable groups since this would imply that so is G – a contradiction.

Again, this shows that an *n*-summable group with the same p^n -socle as a direct sum of countable groups need not be a direct sum of countable groups. The next result characterizes the Ulm functions for which such a phenomenon can occur.

The following statement can also be deduced directly from results presented in [3], but we here give a more transparent proof, however.

Theorem 1.3. Suppose $f: \omega_1 \to C$ is n-realizable. Then every n-summable group G with $f_G = f$ is a direct sum of countable groups if, and only if, $\sum_{[\omega+n-1,\omega_1)} f$ is countable.

Proof: Suppose first that $\sum_{[\omega+n-1,\omega_1]} f$ is countable, and let H be $p^{\omega+n-1}$ -high in G. Since G is *n*-summable, by Theorem 3.5 of [2], H must be a direct sum of countable groups. Since $r(G/H) = \sum_{[\omega+n-1,\omega_1]} f \leq \aleph_0$, it follows from Wallace's theorem (see,

for instance, Proposition 1.1 of [6]) that G is a direct sum of countable groups.

Conversely, suppose $\sum_{[\omega+n-1,\omega_1]} f$ is uncountable; our aim is then to produce an *n*-summable group *G* with $f_G = f$ which fails to be a direct sum of countable groups. If *f* is not admissible, then any *n*-summable group *G* with $f_G = f$ will fail to be a direct sum of countable groups, so we may assume that *f* is admissible. In particular, we can conclude that $\sum_{[\omega+n-1,\omega_2)} f$ is uncountable, so there is an integer $m \ge n-1$ such that $f(\omega+m)$ is uncountable. In addition, the admissibility of *f* implies that for every $\beta < \omega$, $\sum_{(\beta,\omega)} f$ is uncountable, so there is an unbounded subset $S \subseteq \omega$ such that for all $\beta \in S$, $f(\beta)$ is infinite.

We define

$$h(\beta) = \begin{cases} 1, & \text{if } \beta \in S; \\ \aleph_1, & \text{if } \beta = \omega + m; \\ 0, & \text{otherwise.} \end{cases}$$

Since $\operatorname{supp}(h) = S \cup \{\omega + m\} \subseteq I_n$, it is clear that *h* is *n*-admissible, so there is an *n*-summable group *H* with $f_H = f$. Note that *h* is not admissible, so that *H* is not a direct sum of countable groups.

Since *f* is *n*-realizable, there is an *n*-summable group *G'* with $f_{G'} = f$. If $G = G' \oplus H$, then *G* is *n*-summable, and since it is easy to check that f = f + h, it follows that $f_G = f_{G'} + f_H = f + h = f$. On the other hand, since *H* fails to be a direct sum of countable groups, *G* is not a direct sum of countable groups, either.

REFERENCES

- 1. Fuchs L. (1970, 1973) Infinite Abelian Groups. Vol. I, II. New York; London: Academic Press.
- Danchev P.V., Keef P.W. (2010) n-Summable valuated pⁿ-socles and primary abelian groups. Commun. Algebra. 38(9). pp. 3137–3153.

- 3. Keef P.W. (2011) Realization theorems for valuated *pⁿ*-socles. *Rend. Sem. Mat. Univ. Padova.* 126. pp.151–173.
- 4. Danchev P.V. (2012). Valuated p^n -socles and C_{λ} *n*-summable abelian *p*-groups. *Pioneer J. Math. and Math. Sci.* 6(2). pp. 233–249.
- 5. Danchev P.V. (2013) A note on $p^{\omega+n+2}$ -projective efi *n*-summable abelian *p*-groups. *Adv. Appl. Math. Sci.* 12(3). pp. 151–155.
- Danchev P.V., Keef P.W. (2009) Generalized Wallace theorems. *Math. Scand.* 104(1). pp. 33–50.

Received: November 6, 2017.

Peter V. DANCHEV (Professor, Department of Mathematics, Plovdiv University "P. Hilendarski", Plovdiv 4000, Bulgaria)

E-mail: pvdanchev@yahoo.com

Данчев П.В. (2018) ЗАМЕЧАНИЕ О СУЩЕСТВЕННО НЕРАЗЛОЖИМЫХ *n*-СУММИ-РУЕМЫХ АБЕЛЕВЫХ *p*-ГРУППАХ. Вестник Томского государственного университета. Математика и механика. № 51. С. 15–18

DOI 10.17223/19988621/51/2

Для каждого натурального *n* мы доказываем, что существует неограниченная *n*-суммируемая абелева *p*-группа, которая существенно неразложима. Этот пример параллелен известному аналогичному результату, установленному для сепарабельных абелевых *p*-групп.

Ключевые слова: суммируемые группы, существенно неразложимые группы, допустимые функции Ульма, прямые суммы счетных групп.

Danchev P.V. A NOTE ON ESSENTIALLY INDECOMPOSABLE *n*-SUMMABLE ABELIAN *p*-GROUPS. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika* [Tomsk State University Journal of Mathematics and Mechanics]. 51. pp. 15–18

AMS Mathematical Subject Classification: 20K10.