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Abstract
This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubri-

cant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the

lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial

distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in

the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the

melting/solidification phase transitions increases with time.
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Introduction
The boundary friction mode occurs in tribological systems

when the thickness of the lubricant layer separating two

contacting surfaces is significantly smaller than the typical size

of the surface roughness. At such a system configuration, the

lateral motion of the friction surface is followed by a contact

interaction between the asperities. A specific case of boundary

friction is friction between two atomically flat surfaces separat-

ed by a layer of lubricant with thickness of a few atomic diame-

ters [1,2], or even monolayers [3]. Such type of friction mode

plays an important role in applied mechanics as it often occurs

in nanometer-sized tribological systems that are commonly used

in aerospace technologies, computer memory devices and elec-

tronic positioning systems [4]. Various experimental research

has shown that in the boundary friction mode, the lubricant can

undergo periodic phase transitions between the structure states

which may lead to the stick–slip motion with non-monotonic

time dependence of the friction force [1,2,4,5]. Stick–slip

motion is known to cause fast destruction of the contact parts of

microscopic devices, which is why it receives significant atten-

tion from the scientists and engineers.
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The boundary friction mode can be described within the frame-

work of several theoretical models [6-12] where lubricant

melting is described either as a first-order [8,9], or a second-

order [10,11] phase transition. It is worth mentioning that in

three-dimensional systems, melting always appears as a first-

order phase transition [13], while in the systems with confined

lubricant, second-order phase transitions were observed in both

numerical [14-16] and theoretical [10] studies. Moreover, recent

experimental investigations [5] have shown that melting as a

first-order phase transition is not possible for boundary lubri-

cants consisting of spherically shaped molecules. However for

the polymeric lubricant materials, first-order phase transition

may occur [17].

In our previous work [18] we studied the stick–slip boundary

friction mode considering lubricant melting as both first and

second-order phase transitions with an inhomogeneous distribu-

tion of elastic stress in a contact area. This obtained results have

shown that the melting begins at the edge of a contact area and

propagates to its center, and the wave of melting is followed by

a wave of recrystallization. Such inhomogeneous behavior was

also observed in experiments [19,20]. However, in [18] we con-

sider the motion of the friction surfaces with constant relative

velocity, while in the real experiments, the driving device is

applied to the upper surface through the elastic spring [1,4,6]. In

such an experimental configuration, the velocities of the fric-

tion surface and driving device are not equal, which significant-

ly affects the friction mode. In the present paper, we study this

situation using a previously developed technique [18]. In our

research we use a thermodynamic approach, as proposed in

[10], which gives relevant physical results. The dependence of

the order parameter on elastic strain in the lubricant layer, ob-

tained using the above-mentioned thermodynamic approach,

agrees with the similar data obtained from computational

studies [14-16]. Moreover, strain–stress curves obtained in [10]

are confirmed by experimental data [21].

Results and Discussion
We consider a simplified case where the properties of the lubri-

cant are independent of pressure and its behavior can be de-

scribed within a thermodynamic approach [10]. Assuming that

the melting of the lubricant develops as a second-order phase

transition (which follows from the computer simulations [14,15]

and experimental investigations [5]), the free-energy density

can be written in the form [10]:

(1)

where T is the temperature of the lubricant; Tc is the critical

temperature; εel is the shear component of the elastic stress; α, a

and b are positive constants. The order parameter φ is a peri-

odic component of the microscopic density of the material: in a

solid-like state of the lubricant φ > 0, while in a liquid-like state

φ = 0.

Using Equation 1 and the definition τ = ∂f / ∂εel [10,22] shear

stresses that appear in the lubricant can be written in the form:

(2)

where we have introduced the shear modulus of the lubricant μ,

that takes nonzero values only in solid-like states. The station-

ary values of the order parameter φ0 can be estimated from the

condition ∂f / ∂φ = 0 in the following form:

(3)

According to Equation 3, the stationary value of the order pa-

rameter φ0 decreases with the growth of both temperature T and

elastic strain εel. When the strain exceeds a critical value

(4)

stationary values of the order parameter φ0 and shear modulus

μ0 (according to Equation 2) equal to zero and the lubricant

melts. In the case εel < εel,c as defined by Equation 4, the sta-

tionary stress in the lubricant can be expressed as

(5)

Equation 5 describes the strain–stress curve defined by the

expansion parameters. However, it is more convenient to use

experimentally observable values of the maximum stress τmax

and strain . The relation between the expansion parameters

α, a and b and values of τmax and  can be estimated from

Equation 5 in the following form [18]:

(6)

To study the kinetics of the lubricant we employed the

Ginzburg–Landau–Khalatnikov evolutionary equation for the

order parameter in the form:
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Figure 1: Geometrical scheme of the system under investigation. Stamp of a cylindrical shape with radius a0, made of material with shear modulus of
G2 and Poisson ratio v2, placed over the material with elastic parameters G1,v1. Upper and lower friction blocks are separated by a layer of lubricant
with thickness h0.

(7)

where γ is the kinetic parameter that defines the inertial proper-

ties of the system, ξ(t) represents random processes in the heat

fluctuation of a small amplitude which cannot significantly

affect the system behavior. Nevertheless, it is necessary to take

them into account due to the peculiarities of the further numeri-

cal calculations [23]. In explicit form, Equation 7 can be written

as

(8)

The thermodynamic approach described above can be used to

investigate the boundary friction mode with different geomet-

rical shapes of the contact area. In the present work we consider

a tribological system as shown in Figure 1.

As can be seen from Figure 1, a cylindrically shaped flat-ended

stamp with radius a0 is in contact with a lower surface through

the lubricant layer with thickness h0. The materials of the top

and bottom surfaces have the shear moduli G1,G2 and Poisson

ratios v1,v2, respectively. This configuration can be reduced to

the contact of a rigid stamp with half-space characterized by an

effective shear modulus [24]

(9)

Assuming that the upper stamp has mass m, and the coordinate

of the stamp center is X, let us consider the situation where the

stamp is driven by a spring with the constant stiffness K. The

free end of the spring moves with a constant velocity V0. Thus,

the equation of motion for the upper friction block with mass m

has the following form [4]:

(10)

where t is the time, and Fx is the friction force between two

contacting surfaces. The magnitude of the friction force Fx

depends on the properties of the system shown in Figure 1.

As the upper stamp moves, local displacements of its surface in

the contact area with a lubricant are defined by a radial distribu-

tion , where r is the radial coordinate. Denoting the cor-

responding local displacements of a bottom surface as ,

we can define the local shear strain in the lubricant layer as a

function of the radial coordinate r:

(11)

Knowing the distribution of strain ε(r) and order parameter φ(r)

we can obtain the distribution of the stress in the lubricant ac-

cording to Equation 2:

(12)

The distribution of the displacements  in Equation 11 is

defined by shear stress. In our further investigations we will use

the method of dimensionality reduction (MDR) [24-26], which

allows us to reduce the three-dimensional problem (with general

coordinate r) to an equivalent one-dimensional (coordinate x)

with a possible reverse transition.
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Figure 2: (a) Kinetic dependence of the friction force Fx(t), calculated at parameters τmax = 106 Pa,  = 1.0, a = 106 Pa, h0 = 10−7 m,
γ = 10 (Pa·s)−1, a0 = 2·10−5 m, G* = 109 Pa, K = 500 N/m, m = 0.1 kg, V0 = 1 m/s. (b) Spatial distribution of the order parameter φ(r) in the moment of
time t = 1.3 ms, related to final point of the dependence shown in Figure 2a. (c) Time dependence of the mean values of the order parameter <φ>
(solid line) and elastic strain <εel> (dashed line). (d) Spatial distribution of the elastic strain εel(r) at t = 1.3 ms.

Within the MDR technique, a one-dimensional distribution of

the force density can be defined from the known distribution

τ(r) as:

(13)

From the obtained q(x), the one-dimensional distribution of the

displacements  can be calculated as:

(14)

and the distribution  can be obtained from the equation:

(15)

The elastic component of the friction force in the system can be

defined in two ways (in one-dimensional and three-dimensional

interpretations):

(16)

The aim of the present work is to take into account the elastic

properties of the contacting materials in simulation of the

kinetics of the boundary friction in the system shown in

Figure 1. Let us introduce the brief algorithm of the simulation

scheme. First, we need to set the initial distributions 

and . After that, the procedure described in Equa-

tion 11–Equation 15 is repeated in loops and for every value of

ε(r) a related value of the order parameter is calculated from

Equation 8.

The displacement of upper stamp X can be estimated from the

numerical solution of Equation 10 with friction force Fx calcu-

lated from Equation 16. With incremental growth of the upper

friction block, coordinate X values of the distribution 

are also incremented by the same magnitude. Thus, at the begin-

ning of motion, . However,  is set to

zero when the lubricant melts (in numerical scheme 

when φ(ri) < 0.01 [18]).

In numerical calculations integrals of Equation 13, Equation 15

and Equation 16 were replaced by corresponding sums,

while coordinates x and r were divided into N segments. All

calculated distributions depending on radius r (or coordinate x),

were computed at the points ri = ia0 / N (xi = ia0 / N), where

. In our simulation we set the time step to be

Δt = 10−8 s and number of segments N = 2000.

Figure 2 shows the results of a numerical simulation of the

shifting of the free end of the spring with constant velocity V0 at

constant system parameters.

An analogous dependence was described in [18], where the

motion of a stamp with constant velocity was considered. Such

configuration relates to the case where the spring, shown in

Figure 1, is replaced by the rigid coupler. However, in real ex-
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periments, the spring (finite stiffness) between the stamp and

the driving device always exists.

The dependence shown in Figure 2 allows us to conclude

that the stick–slip mode, with increasing frequency of the

melting/solidification phase transitions, is established in the

system. The growth of the frequency is caused by the increas-

ing tension of the driving spring ΔX = V0t − X and the elastic

force Fu = K(V0t − X). The shear velocity of the upper stamp

 also increases according to Equation 10, while the time

interval, during which the elastic stress εel exceeds the critical

value, is reduced.

As it is follows from Figure 2b,d, melting of the lubricant

occurs at the edge of the contact area and propagates to the

center; this situation was observed earlier in theoretical [18,27]

and experimental [19] research. It is worth mentioning that

before the first melting, the dependencies Fx(t), <φ>(t) and

<εel>(t) show the transition mode where monotonic growth of

the friction force Fx and mean value of elastic strain <εel> as

well as <φ> are significantly slower. The corresponding time

interval from the beginning of motion to the first melting is the

largest due to the presence of the spring between the stamp and

driving device [4]. Such a transition mode was not observed in

[18] as the stamp was moving with constant velocity V from the

very beginning of motion.

Additional time dependence of the order parameter φ(t) ob-

tained for different values of the radial coordinate r is shown in

Figure 3.

Figure 3: (a) Time dependence of the order parameter φ(t), calculated
using the same parameters as in Figure 2 and corresponding to the
melting process (arrow 1) before the first dashed line and to the recrys-
tallization process (arrow 2) after the first dashed line for different
values of the radial coordinate r. Arrows show the increment of a radial
coordinate r from 2 to 18 μm, with a step of 2 μm. Inset shows the time
interval between two dashed lines.

As it can be seen from Figure 3, melting begins at the edge of

the contact area and is immediately followed by recrystalliza-

tion. We also conclude that the inhomogeneous distribution of

the parameters weakly affects the behavior of the considered

tribological system in contrast to the case of a first-order phase

transition, where the influence of inhomogeneity is significant-

ly stronger [18].

The developed theoretical model of the boundary friction allows

investigating of the influence of the temperature of the lubri-

cant on the melting process. It is worth mentioning that the in-

fluence of the temperature was studied in a previous work [18]

for the case where the stamp was moving with a constant

velocity, and here we will discuss an analogous investigation

for the system with the spring. As the coefficient

(17)

is the only parameter in the model that depends on the tempera-

ture T, the variations of this coefficient can be considered as

variations of the temperature of the lubricant. As it follows from

the definition, the coefficient A decreases with temperature

increase. The dependence in Figure 2 is obtained using the pa-

rameters τmax = 106 Pa and  = 1.0, which corresponds to

the value of A = 1.5·106 Pa according to Equation 6. Figure 4

shows the time dependence of the friction force with monotoni-

cally decreasing coefficient A according to the relaxation law

(18)

where A0 is the initial value of coefficient A at time t = 0, while

 is the relaxation time. Equation 18 relates to the increase of

the lubricant temperature.

The temperature of the lubricant can vary during the natural

heat exchange with the environment (friction surfaces are

considered as a thermostat) [28]. As it follows from Figure 4,

the higher temperature of the lubricant leads to the reduced

amplitude of the friction force, elastic stress and order

parameter, which was previously observed in [18]. However, in

the considered case, the frequency of the phase transitions

increase with time due to the presence of the spring, as shown

in Figure 1. Complete melting of the lubricant occurs at

A = 2α(Tc−T)a / b ≤ 0 (not shown in the figure) and is followed

by a sliding mode with zero friction force Fx = 0 (only the

elastic component of the friction force is considered within the

proposed model).
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Figure 4: (a) Time dependence of the friction force Fx (Equation 16)
using the parameters of Figure 2 and an increasing temperature ac-
cording to Equation 18 using the parameters A0 = 1.5·106 Pa and

s. (b) Mean values of the order parameter <φ> and elastic
strain <εel> are according to the parameters of Figure 4a.

Let us note that all presented dependencies relate to the particu-

lar situation where elastic stress increases according to Equa-

tion 11. However, in various experimental and theoretical

studies, the boundary friction mode develops through an alter-

native mechanism where elastic stress, which cause the melting

of a lubricant, can also exist in a liquid-like state [4,9,23]. At

these conditions of time dependence, the friction force has a

saw-like form and melting of the lubricant occurs when the

shear velocity V exceeds some critical value. After the lubricant

is melted, the elastic friction force becomes equal to zero, i.e.

Fx = 0.

In the proposed model, we consider a quasi-static case where

the elastic strain is defined by the displacement of the friction

surfaces (see Equation 11) instead of the shear velocity V.

Moreover, in the case of quasi-static contact, the viscous fric-

tion force is not considered, while in the standard dynamic

model, it plays significant role [9]. Note however, that in most

cases, the boundary lubricant layers will exhibit non-Newtonian

behavior, so obtaining the dependence of viscous friction force

on shear velocity may represent another difficult challenge [29].

Thus, in our model, the increase in the shear velocity V causes

the increase in the frequency of phase transitions, and a critical

value of V related to the complete melting of the lubricant is not

observed. However, it is worth mentioning that the developed

approach allows us to investigate the physical processes directly

in the contact area, which is not possible within standard

models.

The dependence of the friction force Fx on the coordinate of the

upper friction block X as shown in Figure 5 corresponds to the

data from Figure 2a and Figure 4a.

Figure 5: (a) Dependence of the friction force Fx on the stamp coordi-
nate X (upper friction surface), corresponding to Figure 2a. (b) Depen-
dence of the friction force Fx on the stamp coordinate X, correspond-
ing to Figure 4a.

As it can be seen from Figure 5, Fx(X) is periodical (with

damping oscillations in the second case, as the amplitude of the

friction force decreases in time due to the heating of the lubri-

cant). The presented dependencies have a regular form in

contrast to the data in Figure 2 and Figure 4, where the frequen-

cy of the phase transitions increases with time. Different forms

of the obtained dependencies can be explained as follows. Let

us recall that in our simulations we introduced the constant

velocity of the free edge of the spring V0 (see Figure 1). The

velocity of the stamp center  is calculated from

Equation 10 and does not coincide with the velocity V0 mostly

due to the presence of the friction force Fx (Equation 16). After

the motion has begun, the tension of the spring and related

growth of the elastic force causes the growth of the upper stamp

velocity V. The lubricant melts in certain regions of the contact

area where elastic stress, εel(r), exceed a critical value, εel,c

(Equation 4). As the velocity of the upper stamp V grows, the

time needed for the elastic stress to reach the critical value εel,c

decreases. Thus, the frequency of the phase transitions in

Figure 2 and Figure 4 increases in time. However, strains

(Equation 11) are determined by the magnitude of the displace-

ment of the upper stamp over the bottom surface after another

melting and subsequent solidification (when the lubricant solid-

ifies after melting, strain is equal to zero for the subsequent

growth according to Equation 11). Thus, the upper stamp, after

another solidification of the lubricant, must pass approximately

the same distance before the next melting, as is depicted in
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Figure 5. This situation confirms the assumption that the fre-

quency of the phase transitions increases (as it is shown in

Figure 2 and Figure 4) due to the increase in the strain rate.

Conclusion
We have presented the dynamical simulation of the boundary

friction between a cylindrically shaped stamp and a flat surface.

Using the method of dimensionality reduction (MDR) we have

studied the stick–slip friction mode that occurs in the tribolog-

ical system under shear deformation. The MDR approach

allowed us to describe the situation in which elastic stress,

strain and order parameter are spatially distributed within con-

tact area. The established stick–slip mode is characterized by

continuous phase transitions between solid-like and liquid-like

states of the lubricant, which were described as the second-

order phase transitions between kinetic states of friction. Within

the performed numerical simulation it is shown that an increase

of the lubricant temperature leads to smaller amplitudes of the

friction force, elastic stress and order parameter, while the fre-

quency of phase transitions increases due to the presence of the

spring. It is worth mentioning that the spatial distribution of

elastic stress considered in the presented study will always

occur in tribological systems with analogous geometrical shape

of the contact area; thus, the developed approach can be an ad-

ditional tool in various experimental investigations for contact

problems of this type.
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