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Abstract—The article describes the factor model of Tomsk 
region schools functioning which was developed and investigated 
using the STATISTICA system. The constructed model describes 
an impact of different variables (context factors) on educational 
results of Tomsk school graduates. At the preliminary stage the 
most significant variables were determined, the exploratory data 
analysis was made using the method of principal components.  
There were formulated 3- and 4-factor models using Kaiser-
Guttman’s and Cattell's Criteria. Factor rotation with Varimax 
method allowed to interpret factor loadings clearly. In this work 
there were investigated the quality of the factor model for 
different types of schools such as urban, country, ungraded ones.  

Keywords—Factor model, factor loading, determination 
coefficient, dispersion, correlation, matrix, criterion, method of 
principal components, eigenvalues. 

I.  INTRODUCTION  
Nowadays in Russian Federation the most standardized 

education quality assessment procedure is the Unified State 
Exam (USE). The education system in Russia is not a closed 
system, so the individual achievements of school students are 
influenced by the so-called context factors: the socio-economic 
level of the territory, educational qualification of the parents, 
etc. [1, 2]. The investigation [3] discovered the relation 
between students’ results as well as school administrators' and 
teachers' attitude to the USE, teachers' qualification and age, 
complex social factors of school functioning, etc. This article 
takes aim to reveal different factors, which are most significant 
for educational results. The other objective is to improve the 
methods of the different types of schools comparison [3]. The 
method, proposed at [2], became the basis to investigate Tomsk 
school USE-results and to develop stochastic model.  

The input data is the matrix with ~180 variables (factors) 
and more than 200 lines (schools of different types: urban, 
country and ungraded). For each line (school) about 180 
context factors were formed, such as "Total amount of 
teachers", "Number of families with both parents unemployed", 
"Total amount of students, having "Good" and "Excellent" 
marks at the secondary school", etc. The matrix of conjugate 
correlations with dependent variables (results of the USE) was 
used to develop the most significant context factors. In 
previous papers the multivariate linear regression models with 

different sets of independent variables were constructed [4, 5]. 
The optimal dimension (from 12 to 1) was selected to provide 
the model quality (all the regression equation coefficients are 
significantly deviated from 0, the adjusted coefficient of 
multiple determination 2( )adjR is maximal). This study showed 
that for most schools and different sets of context factors the 3-
dimension model is optimal, though maximal 2( )adjR were less 
than 0.5 that proves model to be insufficient. Further 
investigation was made in the framework of factor analysis.  

The main aim of the factor analysis is to reduce the model, 
e.g. to decrease the number of considering variables. This 
reduction is attained by the extracting hidden general factors, 
which cannot be measured directly. These factors explain the 
relations between observed characteristics (variables), so, 
instead of original set of variables, we can analyze the 
extracted factors (the quantity of extracted factors is 
considerably less than original set of interconnected variables). 
The advantage of the factor models application is the fact that 
these models are working well not only in technical systems, 
but also in medical, biological, social and other systems [6]. 

In this paper the factor analysis model is described in more 
detailed way. The original set of data is presented as a 
matrix ],[ jixX = ,,1 ni = Nj ,1= , where N is a number of 
considered subjects, n is a quantity of measured variables.  
Suppose, that in the factor model each element jix  should be 
the result of the influence of few (m) hypothetic general factors 
(m<<n) and a character factor [7]:  

 ,......2211 jijmijmrijrijijji vdfafafafax ++++++=  (1) 

where jrα  is a weight coefficient (or load) for jth variable of 
rth general factor; fri is meaning of rth general factor of ith 
subject of inquiry; dj is a weight coefficient (or load) for jth 
variable of jth character factor; vji means the jth character factor 
of ith subject of inquiry; ,,1 nj =  ,,1 Ni =  ,,1 mr =  m<< n. 

Taking into account that original data set ][ jixX =  
contains the variables of different dimensions, we have to 



standardize the matrix elements and than investigate the factor 
model: 

 
jjjiji SXxy /)( −=  (2) 

where jX − is a sample mean of jth variable (character); Sj is a 
sample standard deviation for jth variable.  

Finally, we considers the model 

 ,......2211 jijmijmrijrijijji vdfafafafay ++++++=  (3) 

where ajr is an unknown coefficients (factor loads); djvj is the 
remainder (residual), or residual specific factor. Now, the 
problem is to estimate optimally the factor loads ajr. 

In this research the method of principal components is used, 
the minimum of the divergence between original character 
covariance matrix and the matrix, derived after factor loads 
estimation was used as a criterion of optimality. In this case, 
the measure of the variance of these matrixes is the Euclidean 
norm of their divergence [8]. 

All stages of the model development, research, analysis, 
presentation of the obtained results were implemented using 
the STATISTICA software package. 

At first stage of this investigation (as for regression 
analysis) the correlation matrix to discover variables with the 
correlation coefficient considerably deviated from 0 is 
calculated. The data analysis included all schools of the Tomsk 
region. The results of this analysis allowed to distinguish 16 
most important variables (Table I).  

TABLE I.  THE VARIABLES, USED IN THE MODEL 

№ of 
variable 

Name of variable 

1 The share or part of schools with psychologists + speech and 
language pathologists 

2 The part of schools with pedagogues of additional education  
3 The part of declining families 
4 The part of families with both parents working 
5 The part of families with both parents having higher 

education 
6 The part of families with one of the parents having higher 

education 
7 The part of families living in socially dangerous conditions 
8 The part of students having a police records (or other 

services) 
9 Total amount of students studying profile programs at the 

10-11th grades in 2011-2012 years.  
10 Total amount of classes having profile programs at the 10-

11th grades in  2011-2012 
11 Total amount of students having "Good" and "Excellent" 

marks at basic school in  2011-2012 
12 Total amount of students, having " Good" and "Excellent " 

marks at the secondary school in 2011-2012  
13 The percent of basic part fulfillment of the USE (Russian 

language) 
14 The average score in the USE Russian language  
15 The percent of basic part fulfillment of the USE 

(Mathematics) 

№ of 
variable 

Name of variable 

16 The average  score in the USE Mathematics  
The table I contains both types of context factors 

(variables) such as initial factors ("The average  score in 
Mathematics at the USE", "Number of participants and winners 
of the contests", etc) and transformed factors ("The part of 
schools with psychologists + logopedists + defectologists", 
"The part of students having a police records (or other 
services)", etc). Actually, the variable "The part of 
psychologists + logopedists + defectologists" may be equal in 
different schools, in contrast to the variable "Total amount of 
teachers". Obviously, it is correct to use the relative 
(normalized) values of the context factors instead of the 
absolute values (i.e., to normalize the initial factors by the total 
amount of students or the average amount of teachers in 
school, etc.). 

Formally, these variables characterize three groups of 
indicators: 

1. Qualification and innovation indicators of the school; 

2. Social and economical conditions; 

3. Educational results of students (including results of the 
USE in mathematics and the Russian language). 

There was pointed [4] that the influence of the context 
factors depends on the school type that is urban, country, 
ungraded school. According to this, the characteristics of the 
factor models, developed for different types of schools are 
considered.  

II. RESULTS AND DISCUSSION 

A. The exploration analysis  
It is  supposed at the stage of the exploratory data analysis  

that the number of factors to extract m is equal to the quantity 
of variables n. The method of principal components [9] 
supposes that the variance of each variable equals 1. This 
hypothesis is reasonable if we remember that the factor model 
(3) is developed based on standardized original data (2). So the 
total variance equals the sum of variable variances (16 in our 
case). Each factor has the corresponding variance. The 
variances of distinguished factors are called the eigenvalues. 
Using the method of principal components [9] we get the 
eigenvalues of factors (Table II). 

TABLE II.  THE EXPLORATORY DATA ANALYSIS 

Eigenvalues (Factor) 
Extraction: Principal components Value 

Eigenvalue % Total 
variance 

Cumulative 
Eigenvalue 

Cumulative 
%  

1 6,057701 37,86063 6,05770 37,8606 
2 1,918289 11,98930 7,97599 49,8499 
3 1,271599 7,94749 9,24759 57,7974 
4 1,154225 7,21391 10,40181 65,0113 
5 1,019095 6,36935 11,42091 71,3807 
6 0,750309 4,68943 12,17122 76,0701 
7 0,709055 4,43159 12,88027 80,5017 
8 0,640438 4,00274 13,52071 84,5044 
9 0,568002 3,55001 14,08871 88,0545 



Eigenvalues (Factor) 
Extraction: Principal components Value 

Eigenvalue % Total 
variance 

Cumulative 
Eigenvalue 

Cumulative 
%  

10 0,512400 3,20250 14,60111 91,2570 
11 0,467288 2,92055 15,06840 94,1775 
12 0,380023 2,37514 15,44842 96,5526 
13 0,253998 1,58749 15,70242 98,1401 
14 0,216341 1,35213 15,91876 99,4923 
15 0,062565 0,39103 15,98133 99,8833 
16 0,018671 0,11670 16,00000 100,0000 
a. Description of the table II: Column 1 – factor number, 2 – factor variance (eigenvalue); 3 – percent of 

total variance; 4 – cumulated variance; 5 – percent of cumulated variance. 

According to calculations  we can conclude that the first 
factor gives the ~38% of the total variance, the second does 
12% and so on. The bigger the factor number is, the smaller its 
contribution to total variance becomes (i.e. 16th factor gives 
less than 2% of total variance). Also we can see that the second 
factor gives 3 times less contribution than the first one, but the 
3-5th factors' contributions are approximately equal. So, when 
we know the dispersions corresponding to each factor, we have 
to decide how many factors are optimal for the multifactor 
model. 

To solve this problem the Kaiser-Guttman’s Criterion [10] 
is used. This criterion implies   taking into account only those 
factors that have the eigenvalues more than 1. So we can ignore 
factors with corresponding variance that is less than variance of 
one variable. In this case we have to limit our model to 5 
factors, giving 71% of total variance. This multifactor model is 
quite complicated (5 factors) and not adequate (describes just 
2/3 of total variance). 

But it would be better if we could develop simplified model 
(1-3 factors), described not less than 80-85 % of total variance. 
To fix the optimal number of factors we use Scree plot or 
Cattell’s criterion [11]. The idea of the criterion is to plot the 
dependence between eigenvalue and factor number. It is 
reasonable  to limit the number of factors where  the decreasing 
the eigenvalues from left to right will maximally slow down. 
See the plot (Fig. 1) 

 

Fig. 1. Plot of Eigenvalues 

Analyzing this plot we can see that we have to limit the 
number of factors to 5-6, as at these points the shedding is 
slowing down considerably. 

To continue the exploratory data analysis we estimate total 
factor loadings, defined the correlation between variables and 
corresponding factors. Partial results of factor loads without the 
factor rotation are presented at the Table III. Also there are 
marked correlations bigger than 0.7 we use their numbers and 
the numbers of school character group for this variable instead 
of long variables names (column 1). Last two rows contain 
factor variance and its part at the total variance 
correspondingly. 

We can see that the first and the second factors have bigger 
correlation coefficients than other factors, besides, the bigger 
the factor number is, the smaller is the correlation coefficient, 
but decreasing is not very rapid. 

TABLE III.  TOTAL FACTOR LOADINGSS OF EXPLORATORY DATA  
ANALYSIS 

Factor Loadings (Unrotated Factors) Extraction: 
Principal components 

(Marked loadings are >,700000) Var # 

Factor_1 Factor_2 … Factor_5 … Factor_16 
1  {1} -0,2815 0,5083  -0,1609  0,0009 
2  {1} -0,2489 0,5022  -0,0316  -0,0008 
3  {2} -0,4831 0,2331  -0,0666  0,0026 
4  {2} -0,7163 0,3325  -0,0621  -0,0055 
5  {2} -0,7388 0,2739  -0,1103  0,0063 
6  {2} -0,5610 0,3352  -0,0732  0,0010 
7  {2} 0,3655 -0,0189  -0,7393  -0,0008 
8  {2} 0,4680 -0,0965  -0,6246  -0,0005 
9    {1} -0,7396 0,0771  -0,0902  0,0081 
10  {1} -0,4659 -0,0795  -0,0294  -0,0021 
11  {1} -0,7300 0,3400  0,0053  -0,0099 
12  {1} -0,6324 0,0975  -0,0595  0,0047 
13  {3} -0,7855 -0,3697  -0,0677  -0,0127 
14  {3} -0,7859 -0,3813  -0,0579  0,0167 
15  {3} -0,7029 -0,5631  -0,0653  0,0916 
16  {3} -0,7287 -0,5559  -0,0704  -0,0978 
Expl.Var 6,0577 1,9183  1,0191  0,0187 
Prp.Totl 0,3786 0,1199  0,0637  0,001167 

B. Three-factor model development 
Using the exploratory data analysis results and Cattell’s and 

Kaiser-Guttman’s Criterions, we try to develop simple (three-
factor) model and estimate its quality. The factor loadings for 
this model are presented in the Table IV.  

TABLE IV.  FACTOR LOADINGSS FOR THREE-FACTOR MODEL 

Factor Loadings (Unrotated) (Factor) 
Extraction: Principal components 
(Marked loadings are >,700000) Variable 

Factor_1 Factor_2 Factor_3 
1   {1} -0,2815 0,5083 0,1658 
2   {1} -0,2489 0,5023 0,2076 
3   {2} -0,4831 0,2331 -0,6152 
4   {2} -0,7163 0,3325 -0,4098 
5   {2} -0,7388 0,2739 -0,1069 
6   {2} -0,5610 0,3352 -0,2193 
7   {2} 0,3655 -0,0189 -0,1125 
8   {2} 0,4680 -0,0965 0,1451 
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Factor Loadings (Unrotated) (Factor) 
Extraction: Principal components 
(Marked loadings are >,700000) Variable 

Factor_1 Factor_2 Factor_3 
9   {1} -0,7396 0,0771 0,4085 
10 {1} -0,4659 -0,0795 0,4612 
11  {1} -0,7300 0,3400 0,2463 
12  {1} -0,6324 0,0975 0,3207 
13  {3} -0,7855 -0,3697 -0,0776 
14  {3} -0,7859 -0,3814 -0,1056 
15  {3} -0,7029 -0,5632 -0,0270 
16  {3} -0,7287 -0,5560 -0,0213 
Expl.Var 6,0577 1,9183 1,2716 
Prp.Totl 0,3786 0,1199 0,0795 

 

The eigenvalues for the model are presented in the Table V. 

TABLE V.  EIGENVALUES FOR THREE-FACTOR MODEL 

Eigenvalues (Factor) 
Extraction: Principal components Value 

Eigenvalue % Total 
variance 

Cumulative 
Eigenvalue 

Cumulative 
%  

1 6,057701 37,86063 6,05770 37,8606 
2 1,918289 11,98930 7,97599 49,8499 
3 1,271599 7,94749 9,24759 57,7974 

 

The three-factor model is significantly simpler than the first 
one (16 factors), but it can describe just ~58% of total variance. 
And even in this case the most meaningful correlation 
coefficients are observed for the 1st factor and for the different 
variable groups. 

Let us provide the rotation of factors to get more acceptable 
meanings of factor loadings (it is equivalent to axes rotation). 
In this paper  the Varimax raw method [12] is used. This 
method provides the maximization of the squared variance of 
original factor loadings for each factor variables (it is 
equivalent to variance maximization at the squared original 
factor loads matrix). The results are presented at the Table VI. 

The rotation itself didn’t improve the model quality, but it 
allowed to interpret it more clearly. Now, the 1st factor 
describes the educational result of the student (3rd group of 
characters), the 2nd factor is the qualification and innovation 
indicators of the school (1st group) and the 3rd factor is the 
social and economic conditions (2nd group). After the rotation, 
the contribution of each factor became more uniform that the 
last two rows of Table VI show. 

TABLE VI.  FACTOR LOADINGSS AFTER ROTATION 

Factor Loadings (Varimax raw) (Factor) 
Extraction: Principal components 
(Marked loadings are >,700000) 

 
Variable 

Factor_1 Factor_2 Factor_3 
1    {1} -0,186816 0,505181 0,273903 
2    {1} -0,206110 0,514000 0,224968 
3    {2} 0,181115 -0,061367 0,793458 
4    {2} 0,259313 0,254851 0,812035 
5    {2} 0,306132 0,451894 0,578273 
6    {2} 0,144495 0,305678 0,600728 
7    {2} -0,230622 -0,285098 -0,110281 
8    {2} -0,253234 -0,196105 -0,383202 

Factor Loadings (Varimax raw) (Factor) 
Extraction: Principal components 
(Marked loadings are >,700000) 

 
Variable 

Factor_1 Factor_2 Factor_3 
9    {1} 0,431374 0,721672 0,113635 
10  {1} 0,357856 0,537752 -0,137395 
11  {1} 0,238537 0,725364 0,355103 
12  {1} 0,346814 0,611768 0,133154 
13  {3} 0,807891 0,197652 0,260667 
14  {3} 0,817777 0,172787 0,275040 
15  {3} 0,891417 0,098338 0,087605 
16  {3} 0,903492 0,119568 0,099939 
Expl.Var 3,833031 2,808794 2,605764 
Prp.Totl 0,239564 0,175550 0,162860 

C. Four-factor model 
Now we develop acceptable factor model, considering that 

this model will be more complicated. The 4th factor addition 
allowed describing just 65% of total variance. The rotation of 
the factors using Varimax method allowed to interpret clearly 
the factor loadings: the 1st factor is the educational results of 
student (the results of the USE), the 2nd factor is the school 
characteristics, the 3rd factor is student's family characteristics, 
the 4th factor is the teachers' characteristics. 

Based on the research results we can conclude that for all 
types of schools the four-factor model describes just 65% of 
total variance. This is not sufficient for our study.  

D. Factor models for different types of schools  
First, we constructed the correlation matrix only for Tomsk 

urban schools. The most considerable (significantly deviated 
from 0) variables became the same 16 variables as for Tomsk 
region. The results of this investigation are presented in Table 
VII. 

The results of the analysis have shown that the most simple 
three-factor model describes just about 67% of total variance 
for Tomsk schools. For Tomsk region, the results are 9% less. 
The four-factor model has the same results - 75% (65%). 

TABLE VII.  MODEL'S EIGENVALUES (TOMSK) 

Eigenvalues (Factor) 
Extraction: Principal components 

Include condition: V3=128 OR V3=129 Value 

Eigenvalue % Total 
variance 

Cumulative 
Eigenvalue 

Cumulative 
%  

1 7,640543 47,75340 7,64054 47,75340 
2 1,556033 9,72521 9,19658 57,47860 
3 1,476498 9,22811 10,67307 66,70672 
4 1,286398 8,03998 11,95947 74,74670 

 

The further investigation was made for the country, and 
ungraded schools. At first stage of the stochastic model 
development we calculated the correlation matrix to discover 
significant variables for each type of school. The results of the 
pair correlation analysis have shown that the most considerable 
variables became the same 16 variables as for Tomsk region 
(Table I). However, the calculated values of the correlation 
coefficients proved to be less than the same results for urban 
(Tomsk) schools. During further investigations the multifactor 
models were developed. The results of the analyses confirmed 



our hypothesis about the low quality of the factor models for 
these types of schools. In fact, the best results for the four-
factor model for country schools of Tomsk region described 
just about 40% of total variance. 

III. CONCLUSION 
During the research project the different factor models of 

Tomsk region schools functioning were developed and 
investigated using the software package STATISTICA [13]. At 
the first stage the most significant context factors (16 variables) 
were revealed. Using the method of principal components the 
exploratory data analysis was provided. Using the Cattell’s and 
Kaiser-Guttman’s criterions the optimal number of factors (5-
6) was evaluated. The factor loadings analysis has shown that 
the most significant loadings s appeared at the first factor.  

We investigated the three- and four-factor models as the 
simplest. The Varimax method for factor rotation allowed to 
interpret the characteristic groups according to the factor 
numbers clearly. It is observed that the simple models (3-4 
factors) can not provide the required quality (describe less than 
65% of total variance). 

The model investigation for different types of schools has 
shown that for urban schools of Tomsk the quality of models is 
acceptable – 67% and 75% of total variance were described by 
the three- and four-factor models respectively.  

The models developed for country and ungraded schools 
have very low quality due to the fact that the variables used in 
models have different effect on functioning quality of the 
different types of schools, and for country and ungraded 
schools the variables meanings have small effect on the quality 
characteristics of school functioning. 
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