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Abstract—The paper deals with the control 

algorithms for discrete delayed systems with 

unknown inputs (disturbances). Control algorithm is 

based on local criterion with using Kalman filtering 

and nonparametric estimator. Examples are given to 

illustrate the proposed approach. 
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I. Introduction 

Locally optimal discrete control systems are a special 
type of the discrete model predictive control [1, 2] 
(MPC) with one step forecast. The main advantage of 
the method of locally optimal control is a significant 
simplification on the synthesis of the procedure. Last 
years, the MPC procedures have been applied to 
technical systems [2], chemical processes [3], inventory 
control [4], production-inventory system[5-7], and 
portfolio optimization [8].  

In this paper, for the control-delayed systems with 
unknown input, we propose estimates of the unknown 
input, obtained by making use of  the least mean squares 
(LMS) method [9-12] and nonparametric algorithms [13-
18]. The suggested approach allows one to improve the 
estimation accuracy of state vector and unknown input. 
There is presented an example illustrating the 
effectiveness of the proposed control strategies, using 
filtering algorithm with nonparametric estimators in 
comparison with the known algorithms.  

 

II. Model of Discrete System 

Consider the model of object, which is described by 
the discrete equation 

( 1) ( ) ( ) ( )x k Ax k Bu k h Fs k+ = + - + , 

0(0) , ( ) ( ), , 1,..., 1x x u j j j h h= =y = - - + - ,   (1) 

where ( ) nx k RÎ  is a state vector, ( ) mu k h R- Î  is a 

control vector, h  is a value of time delay, ( ) ns k RÎ  is a 

disturbances vector, 
0x  and ( )jy  ( , 1,..., 1,j h h= - - + - ) 

are the known vectors. Matrices A, B, F are given 
constant matrices . 

The local criterion has the form 

 ( ) ( ( 1) ) ( ( 1) )I k x k z C x k zT= + - + -   

 ( ) ( )u k h Du k hT+ - - , (2) 

where 0, 0C D> ³  are weight matrices, z  is a vector, 

which is selected by additional criterion. Transform 
criterion (2):  

( ) ( )( ) ( ) ( )I k u k h B CB D u k h u k h B CT T T T= - + - + -  

( ( ) ( ) ) ( ( ) ( ) ) ( ).Ax k s k z Ax k s k z CBu k hT´ - - + - - -  

Now, obtain the optimal control from the equation 

 
( )

0
( )

dI k

du k h
=

-
.  (3) 

From (3), we have 

 ( ) ( ) ( ( ) ( ) ) 0B CB D u k h B C Ax k s k zT T+ - + - - = . (4) 

Then, from (4) 

 1( ) ( ) ( ( ) ( ) ).u k h B CB D B C Ax k s k zT - T- = - + - -  (5) 

According to (1), we get the following equalities: 

 ( ) ( 1) ( 1) ( 1)x k Ax k Bu k h s k= - + - - - - ,  

 ( 1) ( 2) ( 2) ( 2)x k Ax k Bu k h s k- = - + - - - - ,  

 

( 1) ( ) ( 2 ) ( )x k h Ax k h Bu k h s k h- + = - + - - - .  (6) 

Now, using (6), the locally optimal control (5) is 
represented as follows: 
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 1 1( ) ( ) ( ( )hu k h B CB D B C A x k hT - T +- = - + -   

 
1 0

( ) ( ) ).
h h

i i

i i

A Bu k h i A s k i z
= =

+ - - - - -å å  (7) 

Note that the control (7), formed at the moment 
( ),k h-  demands the knowledge of ( )x k h- , ( )s k h- , 

past values of controls ( )u k h i- -  and forecasts for a 

vector of disturbances at the moments k, 1k -  ,..., 

1k h- + . 

III. Control Using Indirect Observations  

Model of disturbances is defined by the following 

difference equation: 

 ( 1) ( ) ( ) ( )s k Rs k r k q k+ = + +  
0(0)  ,s s=  (8) 

where R  is ( n n´ )-matrix, r(k) is a vector of unknown 

input, ( )q k  is a random vector. There are indirect 

observations  

 ( ) ( ) ( )k s k kw =F + t , (9) 

where ( )kw  is a vector of observations, F  is a matrix, 

( )kt  is a random vector of errors, ( ), ( )q k kt  are 

sequences of the Gaussian random vectors with such 

characteristics: 

 { ( )} 0, { ( )} 0,M q k M k= t =   

 { ( ) ( )} ,T

kjM q k q j Qd= { ( ) ( )} ,T

kjM k j Tt t = d   

 { ( ) ( )} 0,TM q k jt =  (10) 

where M{} denotes the mathematical expectation, kjd  is 

the Kronecker symbol. 

Introduce the local criterion 

 ( ) M{( ( 1) ( )) ( ( 1) ( ))I k w k z k C w k z kT= + - + - +   

 0( ) ( ) / }ku k h Du k h XT+ - - , (11) 

where C > 0, D ≥ 0 are weight matrices, z(k) is specified 

tracked vector, 
0 { (0), (1),..., ( )}kX x x x k= . 

Basing on the principle of separation, find control 
with making use of filtering estimates and forecast 
estimates for components of vector s. As a result, we 
obtain the following control strategy for the current time 
(k - h): 

 
1

1

( ) ( ( ) ( )
h

h i

i

u k h D HA x k h HA Bu k h i+

=

- = - + - -å  

 
1

0

ˆ ˆ( ) ( ) ( ))
h

h i

f p

i

HA Fs k h HA Fs k i z k
-

=

+ - + - -å , (12) 

where 1( ) ,D B H CHB D B H CT T - T T= - +  ˆ ( )fs k h-  and 

ˆ ( )ps k i-  are filtering estimates and forecast estimates, 

which are based on the optimal Kalman filtering 

algorithms using vector of estimates of the unknown 

input ˆ( )r × : 

 ˆ ˆ ˆ( ) ( 1) ( 1) ( )f f fs k h Rs k h r k h K k h- = - - + - - + -   

 ˆ ˆ[ ( ) ( ( 1) ( 1))],fw k h H Rs k h r k h´ - - - - + - -   

 0
ˆ (0) ,fs s=  (13) 

 ( ) ( / 1)fK k h P k h k h H T- = - - -   

 1( ( / 1) )HP k h k h H T -´ - - - +T , (14) 

 ( / 1) ( 1) ,P k h k h RP k h R QT- - - = - - +  (15) 

 
1

( ) ( ( ) ) ( / 1)n fP k h E K k h H P k h k h- = - - - - - , 

 
0(0)P P= . (16) 

To construct the forecast estimates, we have to use the 

extrapolator, which allows one to calculate the estimate 

of the forecasts of disturbances by 1 step: 

 ˆ ˆ ˆ( 1) ( ) ( )p ps k h Rs k h f r k h- + = - + + -   

ˆ( )( ( ) ( ))p pK k h k h Hs k h+ - w - - - , 0
ˆ (0) ,ps s=    (17) 

 1( ) ( ) ( ( ) T)p pr prK k h RP k h H HP k hT T -- = - - F + , (18) 

 ( 1) ( ( ) ) ( )pr p prP k h R K k h H P k h- + = - - -   

 ( ( ) ) ( ) ( )p p pR K k h H Q K k h TK k hT T´ - - + + - - ,  

 0(0)prP P= . (19) 

The forecasts for the next steps 2,..., 1j h= -  are 

determined as follows: 

ˆ ˆ ˆ( ) ( 1) ( 1).p ps k h j Rs k h j f r k h j- + = - + - + + - + -  (20) 

Estimates of the vector ˆ( ),r ×  obtained by using the 

LMS method [9-12] and nonparametric algorithms [13-
18], are based on the minimization criterion 

 { }
1

2 2

1

( ) ( 1)
k h

V W
i

J i r i
- -

=

= c + -å , (21) 

where ( ) ( ) ( 1)i i Rs ic =w -F -  ( ˆ( 1) ( 2)fs i Rs k- = -  

ˆ( 2)r k+ - ), V > 0, W ≥ 0 are weight matrices. So, 

 1
ˆ( ) [ ] ( )r k h V W V k hT - T- = F F+ F W - . (22) 

We take the j-th component of the vector W  in the form 
of the following analog of the known Nadaraya-Watson 
nonparametric regression estimate [19,20]: 

Control Strategies for Discrete Delayed Systems with Unknown Input Using Nonparametric Algorithms

134 978-1-4673-8861-0/16/$31.00 ©2016 IEEE



 
1

1

1
( ) ( )

( )
1

p

j

i j

j
p

i j

p i
i i K

h
p

p i
K

h

=

=

æ ö- +
c ç ÷ç ÷

è øW =
æ ö- +
ç ÷ç ÷
è ø

å

å
. (23) 

Here ( )K ×  is a kernel function, 
jh  is a bandwidth 

parameter. 
 

IV. An Illusrative Example 

Simulations are performed by the following 
conditions: 

0.997 0

0 0.8
A

æ ö
= ç ÷
è ø

, 
0 1

0.1 0.5
R

æ ö
= ç ÷
è ø

,  

diag{0.05 0.02},Q =  

diag{0.05 0.05}T = , 0,D W= =  

0 2;B H F C V P E= = = = = =  

1

2.6 if 0 50,

( ) 2 if 50 100,

3 if 100 150,

k

r k k

k

£ <ì
ï

= £ <í
ï £ £î

 

2

2.5 if 0 50,

( ) 2 if 50 100,

3 if 100 150.

k

r k k

k

£ <ì
ï

= £ <í
ï £ £î

 

 

The control and filtering algorithms are compared 
with the algorithms using the LMS estimates from 

[9, 10]. These comparisons are given in Figs. 1-10: 

 

 

Fig. 1. The tracking of components z1=20 and z2=15 by x1 and x2 with use of 

the LSM estimates. 

 
Fig. 2. The tracking of components z1=20 and z2=15 by x1 and x2 with use of 

nonparametric estimates. 

 

 
Fig. 3. The evaluation of unknown inputs r1 with use of the LSM-estimates. 

 
Fig. 4. The evaluation of unknown inputs r2 with use of the LSM estimates. 

 

 
Fig. 5. The evaluation of unknown inputs r1 with use of nonparametric 

estimates. 
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Fig. 6. The evaluation of unknown inputs r2 with use of nonparametric 

estimates. 

 

 
Fig. 7. The first component of perturbation vector, its estimate of filtration 

and estimate of forecast 
1 11 ,1 ,1ˆ ˆ, ,f ps s s  using the LSM estimates. 

 

 

Fig. 8. The second component of perturbation vector, its estimate of filtration 

and estimate of forecast 
1 12 ,2 ,2ˆ ˆ, ,f ps s s  using the LSM estimates. 

 

 

 

 

 

Fig. 9. The first component of perturbation vector, its estimate of filtration 

and estimate of forecast 
2 21 ,1 ,1ˆ ˆ, ,f ps s s  using nonparametric estimates. 

 
Fig. 10. The second component of perturbation vector, its estimate of filtration 

and estimate of forecast 
2 22 ,2 ,2ˆ ˆ, ,f ps s s  using nonparametric estimates. 

Below, in Tables 1-4 empirical mean square errors (MSE) are 

given for N = 150 and by averaging 20 realizations:  

 

2

1
,

( ( ) ( ))

,
1

N

i i

k
x i

x k z k

N

=

-
=

-

å
s   

 

2

,

1
,

ˆ( ( ) ( ))

,
1

N

i f i

k
sf i

s k s k

N

=

-
=

-

å
s   

 

2

,

1
,

ˆ( ( ) ( ))

,
1

N

i p i

k
sp i

s k s k

N

=

-
=

-

å
s   

 

2

1
,

ˆ( ( ) ( ))

,
1

N

i i

k
r i

r k r k

N

=

-
=

-

å
s  1, 2i = .   
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TABLE I.  EMPIRICAL MSE  OF STATE VECTOR ,x is  

Components LMS 

 

Nonparametric 

 

1 2.06 1.316 

2 1.226 0.805 

TABLE II.  EMPIRICAL MSE  OF FILTERING ,sf is  

Components LMS 

 

Nonparametric 

1 1.531 0.332 

2 1.146 0.832 

TABLE III.  EMPIRICAL MSE OF FORECASTING ,sp is  

Components LMS 

 

Nonparametric 

 

1 1.593 0.798 

2 1.084 0.508 

TABLE IV.  EMPIRICAL MSE OF ESTIMATING OF UNKNOWN INPUT ,r is  

Components LMS 

 

Nonparametric  

 

1 1.315 0.569 

2 0.969 0.486 

 

These results show that the estimation algorithms for 

unknown input and parameters using nonparametric 

procedures provide rather high accuracy of control and 

filtering for systems with unknown input and parameters.  

V. Conclusion 

In this paper, the algorithms of the Kalman filtering and 

control for discrete delayed systems with unknown input is 

developed. The proposed method has been verified by 

simulations. Figures and Tables show that the procedures with 

nonparametric estimators have the advantages in the accuracy 

compared to the known algorithms using the LMS estimates. 

The presented filtering algorithms with nonparametric 

technique may be used in solving the control problems for 

object with time-delay. 
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