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1 Introduction

Nonlinear field models are of great interest in various areas of modern physics. Such models

can have topological defects (or topological solitons) — solutions that are homotopically

distinct from the vacuum [1–3]. Such defects (domain walls, strings, vortices, kinks) arise,

for example, in high energy physics, cosmology, condensed matter, and so on. We notice

also the impressive progress in various scenarios with embedded topological defects, e.g., a

Q-lump on a domain wall, or a skyrmion on a domain wall [4–14].

Special attention is paid in this context to (1+1)-dimensional models. Many realistic

models in (3+1) and (2+1) dimensions can be reduced to the effective (1+1)-dimensional

dynamics. For example a two- or three-dimensional domain wall in the direction orthogonal

to it can be viewed as a topological soliton (kink) interpolating two different vacua of the

model, which are separated by the wall in the two- or three-dimensional world. Besides

that, (1+1)-dimensional models can be used as a simplified setup for studying general

properties of nonlinear field models [13–19].

Topological solitons (kinks) in (1+1)-dimensional field models have been actively stud-

ied recently [20–40]. In particular, the kink-(anti)kink scattering and the interactions of

kinks with impurities are of growing interest. A wide variety of phenomena emerges in these

systems, e.g., escape windows and quasi-resonances in kink-(antikink) collisions [20–30],

resonant interactions of kinks with wells, barriers and impurities [31–34], non-radiative

energy exchange in multi-soliton collisions [35–37]. It is interesting that the presence of a

kink’s internal modes does not guarantee the appearance of resonance windows, as it has

been recently shown for the deformed φ4 model [38].

The interactions of kinks (and antikinks) are studied using different methods, in partic-

ular, quasi-exact methods such as the numerical solution of the equations of motion, which

are partial differential equations, and approximate methods such as the collective coordi-

nate approximation [27, 41–46] and the Manton’s method [47–49]. The simple collective
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coordinate approximation describes the dynamics of the kink-(anti)kink system in terms of

the time dependence of the distance between the kinks, while the Manton’s method allows

one to estimate the interaction between the kink and the (anti)kink at large distances by

the use of the kinks’ asymptotics.

The dynamic properties of the kink-antikink collisions have been extensively investi-

gated in integrable and non-integrable models. It was shown that the energy loss due to

the radiation during the collision is small in integrable models. In contrast to that, in

non-integrable models the radiation effects become important. The amount of radiation

is a complicated function of the initial velocity, and depending on it the result of a kink-

antikink collision can be very different: the solitons can form an oscillating bound state, or

they can bounce back and reflect from each other. The collision process in non-integrable

models is chaotic, in the sense that at some values of the initial velocities the kinks scat-

ter off each other, while at other initial velocities they can annihilate. This behavior is a

consequence of resonances between the oscillations of the kink’s pairs and the excitations

of their vibrational modes. There is no exhaustive theoretical model for describing all the

features of collisions of solitons in non-integrable models, and the best way to investigate

the properties of such systems is numerical simulation.

In our previous publications [50, 51] we have studied multi-kink collisions in the sine-

Gordon and φ4 models. We have shown that the maximal values of the total energy density

can be achieved if all N kinks/antikinks collide at the same point. This happens when the

kinks and antikinks approach the collision point in an alternating order (i.e. no two adjacent

solitons are of the same type). When arranged in this way, the solitons attract each other

and their cores can merge producing high energy density spots. The effect of the kink’s

internal mode on the maximal total energy density was studied for the φ4 model [50]. It

has been shown that the kink’s internal mode can increase or decrease the value of the

energy density that can be produced at the collision point.

In this paper we study the collisions of N ≤ 4 kinks of the φ6 model numerically. The

(1+1)-dimensional φ6 model is well-known in the literature [26, 27, 41, 42, 52], but the

study of simultaneous multi-kink collisions in this model is carried out for the first time.

A simultaneous collision of several kinks in a small region can produce a very large energy

density in this region. Such regions could be of great interest in studying various physical

systems described by (1+1)-dimensional field-theoretical models.

Our paper is organized as follows. In section 2 we briefly describe the (1+1)-dimensional

φ6 model and its topologically non-trivial solutions — kinks and antikinks. In section 3

we describe our method and present the results of the numerical study of the collisions of

N = 2 (subsection 3.1), N = 3 (subsection 3.2), and N = 4 (subsection 3.3) kinks at the

same point. In section 4 we give the conclusion and an outlook.

2 The model

The φ6 model in (1 + 1)-dimensional space-time is described by the Lagrangian density

L =
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

− V (φ), (2.1)
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Figure 1. The potential (2.2) of the φ6 model.

where φ(x, t) is a real scalar field. The potential V (φ), which defines the self-interaction of

the field, has the form

V (φ) =
1

2
φ2(1− φ2)2. (2.2)

The energy functional corresponding to the Lagrangian (2.1) is

E[φ] =

∫ +∞

−∞

[
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+ V (φ)

]
dx. (2.3)

The Lagrangian (2.1) yields the equation of motion for the field φ(x, t):

∂2φ

∂t2
− ∂2φ

∂x2
+
dV

dφ
= 0. (2.4)

The potential (2.2) is non-negative function, and it has three degenerate minima (vacua of

the model): φ̄1 = −1, φ̄2 = 0, and φ̄3 = 1, with V (φ̄1) = V (φ̄2) = V (φ̄3) = 0, see figure 1.

Therefore the model has topological soliton solutions (kinks) — static field configurations

φK(x) interpolating between neighboring vacua.

We use the following notation: a kink φK(x) is said to belong to the topological sector

(φ̄i, φ̄j) if lim
x→−∞

φK(x) = φ̄i and lim
x→+∞

φK(x) = φ̄j . We also denote this kink by using

φ(φ̄i,φ̄j)(x) instead of φK(x).

The kinks of the φ6 model can be easily found analytically by solving eq. (2.4). In the

static case
∂φ

∂t
= 0, and we obtain

d2φ

dx2
=
dV

dφ
. (2.5)

This equation can be reduced to the first order ordinary differential equation

dφ

dx
= ±

√
2V (φ). (2.6)

Because the potential (2.2) has three minima, there are two kinks and two antikinks in the

model, see figure 2. The kinks belong to the topological sectors (−1, 0) and (0, 1), while
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Figure 2. Kinks and antikinks of the φ6 model.

the antikinks belong to the sectors (0,−1) and (1, 0). Below in some cases we use the term

“kink” instead of the term “antikink” for brevity.

For future convenience, we write out here all static kinks and antikinks of the φ6 model:

φ(0,1)(x) =

√
1 + tanhx

2
, φ(1,0)(x) =

√
1− tanhx

2
, (2.7)

φ(−1,0)(x) = −
√

1− tanhx

2
, φ(0,−1)(x) = −

√
1 + tanhx

2
. (2.8)

Notice that the kinks of the φ6 model are asymmetric with respect to the spatial reflection.

Consider, e.g., the kink φ(0,1)(x). At |x| � 1 we have the following asymptotics:

φ(0,1)(x) ∼ ex, x→ −∞, (2.9)

φ(0,1)(x) ∼ 1− 1

2
e−2x, x→ +∞. (2.10)

The mass of each (anti)kink is MK =
1

4
, as can be obtainted by substituting eqs. (2.7)

or (2.8) into the energy functional (2.3). A moving kink or antikink can be obtained from

eqs. (2.7) and (2.8) by the Lorentz boost. Assume that the kinks (2.7), (2.8) are moving

along the x-axis with the velocity v. Then for such moving kinks we have

φ(0,1)(x, t) = φ(0,1)(γ(x− vt)) and so forth, (2.11)

where γ = 1/
√

1− v2 is the Lorentz factor.

The total energy (2.3) can be split into three parts: the kinetic energy K, the gradient

energy U , and the potential energy P ,

E = K + U + P. (2.12)

To do that, the integrand in (2.3), i.e. the total energy density ε(x, t), is written as

ε(x, t) = k(x, t) + u(x, t) + p(x, t), (2.13)
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where

k(x, t) =
1

2

(
∂φ

∂t

)2

, u(x, t) =
1

2

(
∂φ

∂x

)2

, p(x, t) =
1

2
φ2(1− φ2)2 (2.14)

are the kinetic energy density, the gradient energy density, and the potential energy density,

respectively. The gradient energy density, in turn, can be expressed as

u(x, t) =
1

2
e2(x, t), (2.15)

where

e(x, t) =
∂φ

∂x
(2.16)

is the field gradient, which can be positive or negative corresponding to “stretching” or

“compression”.

For example, in the case of one moving kink φ(0,1)(x, t) we have:

p(x, t) =
1

16

1− tanh[γ(x− vt)]
cosh2[γ(x− vt)]

=
1− v2

v2
k(x, t) = (1− v2) u(x, t). (2.17)

The total energy density is

ε(x, t) =
1

8

1

1− v2

1− tanh[γ(x− vt)]
cosh2[γ(x− vt)]

. (2.18)

Integrating this expression with respect to x over the interval from −∞ to +∞, we obtain

the total energy of the moving kink:

EK =

∫ +∞

−∞
ε(x, t) dx =

MK√
1− v2

, (2.19)

where MK =
1

4
is the mass of kink, i.e. the energy of the static φ6 kink.

Collisions of the kinks of the (1 + 1)-dimensional φ6 model can be investigated numer-

ically. In the next section, we present the results of our numerical simulations of collisions

of two, three, and four kinks at the same point. Our goal is to find the maximal (over the

spatial coordinate x and the temporal coordinate t) values of the energy densities: kinetic,

gradient, potential, and total. We also find the maximal values of the field gradient for each

collision. Note that for one moving kink these extreme values can be obtained analytically:

p(1)
max =

2

27
, k(1)

max =
2

27

v2

1− v2
, u(1)

max =
2

27

1

1− v2
, ε(1)

max =
4

27

1

1− v2
, (2.20)

and

e(1)
max =

2

3
√

3

1√
1− v2

. (2.21)
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3 Numerical results

We study the collisions of several φ6 kinks and antikinks at the same point (in a small

region, to be more accurate). Because of the absence of analytic multisolitonic solutions

for the φ6 model, we use initial conditions in the form of superposition of several kinks

and antikinks, which are moving towards the collision point. For every event we adjust the

initial positions and initial velocities of kinks to ensure their collision at one point.

The initial distances between the kinks in our simulations are quite large. Therefore

the overlap of the kinks is exponentially small, i.e. the initial configurations are solutions

of eq. (2.4) with exponential accuracy.

For the numerical study of the evolution of the initial configurations we use the dis-

cretized version of the equation of motion (2.4):

d2φn
dt2

− 1

h2
(φn−1 − 2φn + φn+1) +

1

12h2
(φn−2 − 4φn−1 + 6φn − 4φn+1 + φn+2)

+ φn(1− φ2
n)(1− 3φ2

n) = 0, (3.1)

where h is the lattice spacing, n = 0,±1,±2, . . ., and φn(t) = φ(nh, t). In order to mini-

mize the finite-spacing artifacts, the term φxx in eq. (3.1) is discretized with the accuracy

O(h4) [51]. The equations of motion (3.1) are integrated with respect to time using an

explicit scheme with the time step τ (the value used in the calculations is τ = 0.005) and

the accuracy O(τ4). We use the Störmer method for the integration of eq. (3.1). In order

to be sure that the maximal values of the energy density and the field gradient converge,

we perform numerical simulations with different lattice spacings: h = 0.1, h = 0.05.

In the numerical simulations presented in this section we use 5000 points for the spatial

grid, corresponding to the x range from −250 to 250 for h = 0.1 and from −125 to 125

for h = 0.05. Hence the spatial boundaries are far away enough and cannot affect the

numerical results. In addition, we also use the absorbing boundary conditions in order

to prevent the small amplitude radiation reflected from the boundaries. Below we report

the results of the maximal energy densities and extreme values of the field gradient in the

collisions of N slow-moving kinks and antikinks for 1 < N ≤ 4 [for the case N = 1 these

values can be found analytically, see eqs. (2.20) and (2.21)].

Notice that in some figures we cut off high peaks in order to show the whole space-time

picture of the collision better.

3.1 Collision of two kinks

3.1.1 The configuration (0,1,0)

Now we study the collision of the kink (0, 1) and the antikink (1, 0), the initial configuration

denoted as (0, 1, 0), or KK̄. According to this, the initial condition is taken as the kink

φ(0,1)(x− x1, t) and antikink φ(1,0)(x− x2, t), placed at x1 = −10 and x2 = 10. The initial

velocities are v1 = 0.1 and v2 = −0.1. As already mentioned, there is no exact two-soliton

solution in the φ6 model, and we use the following initial configuration:

φ(0,1,0)(x, t) = φ(0,1)(x− x1, t) + φ(1,0)(x− x2, t)− 1. (3.2)

– 6 –
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At |x1−x2| � 1, this is a solution of the equation of motion up to the exponentially small

overlap of the kink and the antikink.

In the collisions of the kinks (0, 1) and (1, 0), there is a critical value of the initial

velocity vcr ≈ 0.289 that separates two different regimes of the collision process. If the

initial velocity is less than vcr then the kink and antikink become trapped after the colli-

sion, forming a bound state (a bion). At initial velocities larger than vcr the kink and the

antikink escape to infinity after the collision. For further details see, e.g., refs. [26, 27] and

references therein.

In our numerical simulation the initial velocity is v1 = −v2 = 0.1, which is less than

vcr. This means that a bion should be formed after the collision. The bion stays near the

collision point and emits energy in the form of small-amptlidude waves. We thus observe

the “reaction” KK̄ → b, where b stands for the bion.

The numerical results for the configuration (0, 1, 0) are presented in figure 3. In

figure 3a we show the dependence φ(x, t), which demonstrates the main features of the

collision process. Figure 3b demonstrates the space-time dependence of the total energy

density ε(x, t). From this figure we see that the two peaks of the energy density are mov-

ing towards each other, collide, and form a bound state, which decays slowly emitting

small waves. In figures 3c–3e we give the space-time pictures of the kinetic, potential, and

gradient energy densities.

From figure 3c we see that the kinetic energy density of the moving kinks before the

collision is small compared with the amplitude values of the subsequent kinetic energy os-

cillations in the bound state. The gradient energy density behaves differently, see figure 3e:

it decreases noticeably after the formation of the bound state. In figure 3d we show the

potential energy density. It can be seen that it also oscillates but the amplitude falls off

more slowly than in the previous case.

The space-time picture of the field gradient is shown in figure 3f. In terms of the

elastic strain, the kink and the antikink resemble a wave of compression and a wave of

decompression, travelling towards each other. A localized oscillating structure is formed

after the collision, see figure 3f.

From the numerical analysis we obtain the following maximal values of the energy

densities:

k(2)
max ≈ 0.25, u(2)

max ≈ 0.075, p(2)
max ≈ 0.075, ε(2)

max ≈ 0.25. (3.3)

For the field gradient we found

e
(2)
min ≈ −0.4, e(2)

max ≈ 0.4. (3.4)

We have also performed the numerical simulation of the collision of the kinks (0,−1)

and (−1, 0) with the same initial velocities and initial positions, observing the same maxi-

mal values of the energy densities and the field gradient.

3.1.2 The configuration (1,0,1)

In this case, we use the initial configuration

φ(1,0,1)(x, t) = φ(1,0)(x− x1, t) + φ(0,1)(x− x2, t) (3.5)

– 7 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
8

(a) Two kinks collision in the sector (0, 1, 0) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 3. Space-time picture of collision of two kinks in the case of initial configuration (0, 1, 0).

in order to study the collisions of the kinks (1, 0) and (0, 1). We use the same values of

x1, x2, v1, and v2 as in the previous subsection. The critical velocity value in this case is

smaller than in the previous configuration, namely, vcr ≈ 0.045 [26, 27]. The initial velocity

of the kinks in our numerical experiment is more than the critical value. This means that

the kink and the antikink collide and escape from each other after the collision, i.e. we

observe the “reaction” K̄K → K̄K.

In figure 4 we give the results of our numerical simulation. Figure 4a shows the field

profile before, during, and after the collision, illustrating their convergence, interaction

– 8 –
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(a) Two kinks collision in the sector (1, 0, 1) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 4. Space-time picture of collision of two kinks in the case of initial configuration (1, 0, 1).

during the collision, and escape. Moreover, figure 4b shows that the kink and the antikink

attract each other at small distances.

From the numerical analysis we obtain the following maximal values of the energy

densities:

k(2)
max ≈ 0.37, u(2)

max ≈ 0.07, p(2)
max ≈ 0.34, ε(2)

max ≈ 0.37. (3.6)

For the field gradient we have

e
(2)
min ≈ −0.4, e(2)

max ≈ 0.4. (3.7)
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We see that the maximal values of the energy densities in the case of the configuration

(1, 0, 1) differ from those found in the case of the configuration (0, 1, 0), while the extreme

values of the field gradient are the same. The latter fact is explained by noticing that the

maximal absolute values of the field gradient are observed in running non-interacting kinks.

They can be calculated analytically from eq. (2.21), which gives the value e
(1)
max ≈ 0.3868

for the single kink moving with the velocity v = 0.1.

We have also carried out a numerical simulation of the kink-antikink collision for the

configuration (−1, 0,−1), and obtained the same results as for (1, 0, 1).

3.2 Collision of three kinks

3.2.1 The configuration (0,1,0,1)

Our next step is to study collisions of three kinks at the same point. We start with the

configuration of the type (0, 1, 0, 1):

φ(0,1,0,1)(x, t) = φ(0,1)(x− x1, t) + φ(1,0)(x− x2, t) + φ(0,1)(x− x3, t)− 1. (3.8)

This configuration is composed of two kinks (0, 1) and one antikink (1, 0), which is placed

between the kinks. We set the antikink to be static, v2 = 0, while the kinks are moving

towards it from the left and from the right with velocities v1 = 0.1 and v3 = −0.1, respec-

tively. The initial positions of the kinks are x1 = −10 and x3 = 10. It turns out that, in

order to ensure the simultaneous arrival of the two kinks at the location of the antikink,

the latter has to be slightly shifted towards the left kink because of the asymmetry of the

φ6 kinks. We found that the antikink must be placed at x2 = −2.05954 in order to obtain

the maximal energy densities during the collision.

In figure 5 we give the results of our numerical simulation of the kink-antikink-kink

collision in the sector (0, 1, 0, 1).

The kink (0, 1) that started at x = x1 and the antikink (1, 0), which are initially parts

of the configuration of the type (0, 1, 0), annihilate. They form an oscillating lump, which

moves with a high velocity away from the collision point and quickly decays. At the same

time, the other kink (0, 1), which originally started from the point x3, survives and moves

backwards after the collision. So we observe the “reaction” KK̄K → bK.

It is interesting to notice that the velocities of the lump and the kink after the collision

substantially exceed the initial velocities of the colliding kinks. Apparently it is a conse-

quence of redistribution of energy. When the kink and the antikink annihilate, a part of

their energy is transferred to the kinetic energy of the surviving kink, increasing its speed.

We obtain the following extreme values of the energy densities and the field gradient:

k(3)
max ≈ 0.27, u(3)

max ≈ 0.67, p(3)
max ≈ 0.075, ε(3)

max ≈ 0.75, (3.9)

and

e
(3)
min ≈ −0.58, e(3)

max ≈ 1.15. (3.10)

We have also carried out a numerical simulation of the antikink-kink-antikink collision

for the configuration (0,−1, 0,−1) and obtained the same results as for (0, 1, 0, 1).

– 10 –
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(a) Three kinks collision in the sector (0, 1, 0, 1) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 5. Space-time picture of collision of three kinks in the case of initial configuration (0, 1, 0, 1).

3.2.2 The configuration (1,0,1,0)

As in the previous subsection, we consider here a collision of three kinks, but with the

initial configuration of the type (1, 0, 1, 0), which corresponds to two antikinks (1, 0) and

one kink (0, 1) between them, i.e. K̄KK̄. For the numerical simulation we use the following

initial condition:

φ(1,0,1,0)(x, t) = φ(1,0)(x− x1, t) + φ(0,1)(x− x2, t) + φ(1,0)(x− x3, t)− 1. (3.11)

The antikinks are initially placed at x1 = −10 and x3 = 10, and are moving towards each

other with velocities v1 = 0.1 and v3 = −0.1, while the static kink is initially located at

– 11 –
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(a) Three kinks collision in the sector (1, 0, 1, 0) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 6. Space-time picture of collision of three kinks in the case of initial configuration (1, 0, 1, 0).

x2 = 2.06000, see figure 6a. As in the previous case, the position x2 of the central kink

ensures that both antikinks arrive at the location of the kink at the same time.

The results of the numerical simulation are shown in figure 6. The collision pattern

is quite similar to that of the configuration (0, 1, 0, 1). We observe the annihilation of the

kink and one of the antikinks, which are initially parts of the configuration (0, 1, 0). After

annihilation they form an oscillating lump, which escapes from the collision point with a

near-light speed. The other antikink (1, 0), which survives in the collision, also escapes

with a near-light speed — its final velocity substantially exceeds the initial velocity. The

observed antikink-kink-antikink collision is the “reaction” K̄KK̄ → K̄b.

– 12 –
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From the numerical analysis we extract the following extreme values:

k(3)
max ≈ 0.27, u(3)

max ≈ 0.67, p(3)
max ≈ 0.075, ε(3)

max ≈ 0.75, (3.12)

and

e
(3)
min ≈ −1.15, e(3)

max ≈ 0.57. (3.13)

From this results we see that the maximal values of the energy densities are the same as

for the configuration (0, 1, 0, 1), while the extreme values of the field gradient are different.

We have also carried out numerical simulation of the kink-antikink-kink collision for

the configuration (−1, 0,−1, 0) and obtained the same results as for (1, 0, 1, 0).

3.3 Collision of four kinks

3.3.1 The configuration (0,1,0,1,0)

We move on to consider collisions of four kinks and antikinks. We start with the following

initial configuration:

φ(0,1,0,1,0)(x, t) = φ(0,1)(x− x1, t) + φ(1,0)(x− x2, t) + φ(0,1)(x− x3, t) + φ(1,0)(x− x4, t)− 2,

(3.14)

where x1 = −x4 = −10.17604, v1 = −v4 = 0.1, x2 = −x3 = −5.0, v2 = −v3 = 0.05. At

these initial conditions the collision of all four solitons occurs at the same point, see figure 7.

After the collision we observe the formation of a bion at the origin (the collision point),

and an antikink (0,−1) with a kink (−1, 0), which are moving with constant velocities

in the opposite directions away from the collision point. So we have a process of the

type KK̄KK̄ → K̄bK. Of course, some energy in the form of waves of small amplitude is

emitted during the collision. The observed reaction can be interpreted as follows. One kink-

antikink pair forms a bound state (bion), while the other pair scatters, and in the final state

we observe a configuration of the type (0,−1, 0) with the bion at its center, see figure 7a.

We found the following extreme values of the energy densities and the field gradient

for this collision of four kinks:

k(4)
max ≈ 0.95, u(4)

max ≈ 0.3, p(4)
max ≈ 0.075, ε(4)

max ≈ 0.95, (3.15)

and

e
(4)
min ≈ −0.77, e(4)

max ≈ 0.77. (3.16)

3.3.2 The configuration (1,0,1,0,1)

Finally, we consider the initial configuration of the type (1, 0, 1, 0, 1), i.e., the K̄KK̄K

system:

φ(1,0,1,0,1)(x, t) = φ(1,0)(x− x1, t) + φ(0,1)(x− x2, t) + φ(1,0)(x− x3, t) + φ(0,1)(x− x4, t)− 1,

(3.17)

where x1 = −x4 = −17.1375468, v1 = −v4 = 0.1, x2 = −x3 = −5.0, v2 = −v3 = 0.05. As

in the previous cases, we use specially chosen initial positions and initial velocities of the

kinks and antikinks in order to force them all to collide at the same point.
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(a) Four kinks collision in the sector (0, 1, 0, 1, 0) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 7. Space-time picture of collision of four kinks in the case of initial configuration

(0, 1, 0, 1, 0).

The results of the numerical simulation are shown in figure 8.

In particular, from figures 8a and 8b it is clear that two KK̄ bound states (bions) are

formed after the collision, so we have a process of the type K̄KK̄K → bb. The bions escape

from the collision point with velocities that substantially exceed the initial velocities of the

colliding kinks. Notice that the situation is different from that we observed in the case of

the initial configuration (0, 1, 0, 1, 0), described in the previous subsection.
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(a) Four kinks collision in the sector (1, 0, 1, 0, 1) (b) Total energy density

(c) Kinetic energy density (d) Potential energy density

(e) Gradient energy density (f) Field gradient

Figure 8. Space-time picture of collision of four kinks in the case of initial configuration

(1, 0, 1, 0, 1).

For the extreme values of the energy densities and the field gradient we find:

k(4)
max ≈ 1.47, u(4)

max ≈ 0.42, p(4)
max ≈ 0.78, ε(4)

max ≈ 1.47, (3.18)

and

e
(4)
min ≈ −0.91, e(4)

max ≈ 0.91. (3.19)
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N type initial state initial velocities final state final velocities

2 (0, 1, 0) KK̄ vK = 0.1, vK̄ = −0.1 b vb = 0

2 (1, 0, 1) K̄K vK̄ = 0.1, vK = −0.1 K̄K vK = −vK̄ ≈ 0.1

3 (0, 1, 0, 1) K1K̄K2 vK1 = −vK2 = 0.1, bK vb ≈ −0.9,

vK̄ = 0 vK ≈ 0.7

3 (1, 0, 1, 0) K̄1KK̄2 vK̄1
= −vK̄2

= 0.1, K̄b vK̄ ≈ −0.7,

vK = 0 vb ≈ 0.9

4 (0, 1, 0, 1, 0) K1K̄1K2K̄2 vK1 = −vK̄2
= 0.1, K̄bK vK ≈ −vK̄ ≈ 0.13,

vK̄1
= −vK2 = 0.05 vb = 0

4 (1, 0, 1, 0, 1) K̄1K1K̄2K2 vK̄1
= −vK2 = 0.1, b1 b2 vb2 ≈ −vb1 ≈ 0.5

vK1 = −vK̄2
= 0.05

Table 1. Initial and final velocities of quasiparticles.

4 Conclusion

We have studied the process of collision of several φ6 kinks and antikinks at the same

point. We used the initial configurations of the following types: KK̄, K̄K, KK̄K, K̄KK̄,

KK̄KK̄, and K̄KK̄K. In all these cases the initial positions and initial velocities were

fitted so as to achieve the simultaneous collision of all solitons at the same point. For each

initial configuration we restricted ourselves to only one set of the initial data. The results

are collected in tables 1 and 2.

In table 1 we give the initial velocities of the kinks and antikinks together with the

final velocities of the quasiparticles for all collisions discussed in this work. Depending

on the number of the kinks and on their location order in the initial configuration, we

observed reflection, passing through each other, and capture. Apparently, a particular

final state configuration is a consequence of the rather complicated picture of the pairwise

kink-antikink interactions: the two solitons can form a bound state or reflect off each other,

depending on the value of their initial velocities. The critical velocities that separate these

two regimes also depend on the type of the initial configuration, KK̄ or K̄K, because the

kinks of the φ6 model are not symmetric: they have different spatial asymptotics depending

on the vacuum to which the field φ tends, see eqs. (2.9), (2.10).

In the case of the kink-antikink collisions (N = 2) we reproduced the well-known

scenarios. In the KK̄ collision [the initial configuration of the type (0, 1, 0)] at vin = 0.1

we observed the capture of the kink and the antikink and the formation of a bion — a

kink-antikink bound state. This happens because vin < vcr ≈ 0.289. At the same time, in

the K̄K collision [the initial configuration of the type (1, 0, 1)] at vin = 0.1 we could see

the two solitons to escape after the collision. Such behavior is a consequence of the fact

that now vin > vcr ≈ 0.045.
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N initial state ε
(N)
max k

(N)
max p

(N)
max u

(N)
max e

(N)
min e

(N)
max

1 K 0.15 0.0007 0.074 0.075 0.0 0.4

2 KK̄ 0.25 0.25 0.075 0.075 -0.4 0.4

2 K̄K 0.37 0.37 0.34 0.07 -0.4 0.4

3 KK̄K 0.75 0.27 0.075 0.67 -0.58 1.15

3 K̄KK̄ 0.75 0.27 0.075 0.67 -1.15 0.57

4 KK̄KK̄ 0.95 0.95 0.12∗ 0.3 -0.77 0.77

4 K̄KK̄K 1.47 1.47 0.78 0.42 -0.91 0.91

Table 2. Extreme values of the energy densities and the field gradient observed in the studied kink

collisions.

Next, we studied collisions of three solitons, namely two kinks and one antikink [the

initial configuration of the type(0, 1, 0, 1), or KK̄K] and of two antikinks and one kink [the

initial configuration of the type (1, 0, 1, 0), or K̄KK̄]. The observed final states in these

cases seem to be due to the kink-antikink capture at low energies, KK̄ → b, see table 1.

In the case N = 4 the situation is more complicated. On the one hand, in the process

KK̄KK̄ → K̄bK we observed two features: a) the formation of a bion, and b) a kink and

an antikink passing through each other and escaping to infinities. On the other hand, in

the process K̄KK̄K → b b we have two bions in the final state, moving with high velocities

in the opposite directions from the collision point. Thus in the latter case we observe

annihilation of all four solitons.

The extreme values of the energy densities and the field gradient are presented in

table 2. Recall that εmax, kmax, pmax, and umax are the maximal densities of the total,

kinetic, potential, and gradient energy, respectively, while emin and emax are the minimal

and maximal values of the field gradient. The values in the first line of table 2 were

calculated for a single kink with the help of analytic expressions (2.20) and (2.21) for the

kink velocity v = 0.1 (the same velocity as in the simulations of soliton collisions). We

see that the maximal energy density for a single kink is 0.15 and that it is nearly equally

shared between the potential and the gradient energy, while the maximal kinetic energy

density is rather small at this velocity. A single kink produces the maximal tensile strain

of 0.4, while the antikink yields the maximal compressive (negative) strain of the same

magnitude. In the KK̄ collisions, the maximal energy density is 0.25 and it is in the form

of the kinetic energy density. The maximal (minimal) field gradient is the same as for a

single kink (antikink). Due to the asymmetry of the φ6 kinks, the K̄K collisions produce

somewhat higher maximal total energy density of 0.37, also in the form of the kinetic

energy density. The extreme values of the field gradient are the same as for a single kink

(antikink). In three-kink collisions the maximal energy density rises up to 0.75, which is

five times larger than that of a single kink. The maximal and minimal values of the field

gradient are 1.15 and −1.15, respectively, which is nearly three times larger than in a single

kink. In the four-kink collision KK̄KK̄ the maximal energy density is 6.3 times larger than

in a single kink. Strikingly, in the case of the K̄KK̄K collision the maximal energy density
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is almost 10 times larger than in a single kink, and it is in the form of the kinetic energy.

The extreme values of the field gradient in the four-kink collisions are roughly two times

greater than in the case of a single kink. We thus conclude that, in multi-kink collisions,

very high energy density spots can be observed. Notice that the maximum value of the

potential energy density pmax = 0.12 in the process KK̄KK̄ → K̄bK we observe in the

bion oscillations after the kinks’ collision, see figure 7d.

In conclusion, we emphasize that this work opens wide prospects for future research. In

particular, it would be interesting to study multi-kink collisions within the φ8 model [52–55].

Depending on the parameters of the model, the φ8 kinks can have vibrational modes. These

modes, in turn, can affect the energy redistribution in the multi-kink collisions. Besides

that, the kinks of the φ8 model, corresponding to particular choices of the parameters,

can have power-law asymptotics, which leads to a long-range interaction between kink and

antikink. Therefore the multi-kink scattering can have new interesting features.

We would also like to notice that the multi-kink collisions can produce quasiparticles,

which have very high speed. These quasiparticles of the “second generation” can, in turn,

be forced to collide at the same point. Study of such processes can be a subject of future

research.
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