
Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ
Перспективные материалы
с иерархической структурой
для новых технологий
и надежных конструкций
19 - 23 сентября 2016 г.
Томск, Россия

ТЕЗИСЫ ДОКЛАДОВ

«Мероприятие проведено при финансовой поддержке Российского фонда фундаментальных исследований, Проект №16-08-20575\16 г»

Высокотемпературные пьезокерамические материалы для	
исполнительных элементов пьезодвигателей	
Храмцов А.М., Спицин А.И., Сегалла А.Г.,	
Пономарев С.В., Рикконен С.В.	130
Получение естественных композитов деформационным воздействием	
сдвигом под давлением	
Даниленко В.Н., Мулюков Р.Р.	131
Разработка высокопрочных наноструктурированных титановых	
сплавов для авиакосмической промышленности	
Найденкин Е.В., Мишин И.П., Раточка И.В., Лыкова О.Н.	132
The portevin-le chatelier effect in an Al-Mg alloy	
Mogucheva A.A., Saenko M., Kaibyshev R.O.	133
Влияние термомеханической обработки на микроструктуру и механиче	еские
свойства 12%-ных хромистых ферритно-мартенситных сталей	
Полехина Н.А., Литовченко И.Ю., Тюменцев А.Н.,	
Кравченко Д.А., Чернов В.М., Леонтьева-Смирнова М.В.	134
Моделирование процесса прессования-выпрессовки керамических	
порошков	
Истомин А.Д., Матолыгин А.А., Носков М.Д.	135
Analisys of the tensile behavior of a high-Mn twip steel based on the	
microstructure evolution	
Kusakin P., Belyakov A., Kaibyshev R.	136
Влияние легирования наночастицами Al_2O_3 и интенсивной	
пластической деформации на структуру и механические свойства	
алюминиевого сплава 6082	
Найденкин Е.В., Ворожцов С.А., Мишин И.П.	137
Разработка новых наноструктурированных керамик биомедицинского	
применения на основе бадделеита	
Тюрин А.И., Жигачев А.О., Умрихин А.В., Родаев В.В.,	
Коренков В.В., Пирожкова Т.С.	137
Исследование формирования микроструктуры металломатричного	
композита В95+10% SiC при деформации в условиях высоких темпера	тур
Смирнов А.С., Белозеров Г.А., Коновалов А.В.,	J 1
Швейкин В.П., Смирнова Е.О., Перминова А.В.	139
Численное исследование эффективных механических свойств	
металлокерамических композитов с упрочняющими частицами	
различной формы при интенсивных динамических воздействиях	
Каракулов В.В., Смолин И.Ю., Скрипняк В.А.,	140
Реологическая модель для описания поведения сплава	
системы Al-Mg-Sc-Zr в условиях высоких температур	
Смирнов А.С., Коновалов А.В., Муйземнек О.Ю.	141
Моделирование реологического поведения алюминий-графенового	
металломатричного композита	
Смирнов A C – Коновалов A R – Елиина Π A – Мурадымов P R	142

1. Научные основы разработки материалов с многоуровневой иерархической структурой, в том числе для экстремальных условий эксплуатации

относительной энергии границ после ВИК и ТП лежат в области более низких относительных энергий $\Delta\gamma\sim(0.06\div0.7)$ и $\Delta\gamma\sim(0.05\div0.8)$, соответственно. Анализ литературных данных показал, что это связано с увеличением доли малоугловых границ в структуре стали после деформационной обработки [1].

Установлено, что наблюдается корреляция между смещением ИФР энергии внутренних границ раздела стали 12ГБА, с одной стороны, и смещением температуры вязкого-хрупкого перехода в область более низких температур после ВИК и ТП, с другой.

Таким образом, полученные результаты свидетельствуют о высокой эффективности СТМ для количественной аттестации УМЗ структуры стали, полученной в результате деформационной обработки, и позволяют предложить недорогой, относительно простой в методическом отношении метод контроля структурных изменений, которые коррелируют с изменением механических свойств исследуемой стали.

Литература:

- 1. Derevyagina L.S., Panin V.E., Korznikov A.V., Gordienko A.I. Meso- and Microstructural Features of Steel 12GBA Produced by Different Methods of Thermomechanical Treatment // AIP Conference Proceedings 1683, 2015, 020037-020040.
- 2. Панин В.Е., Егорушкин В.Е. Основы физической мезамеханики пластической деформации и разрушения твердых тел как нелинейных иерархически организованных систем// Физическая мезомеханика 18 (5), 2015, 100-113.
- 3. Кузнецов П. В., Петракова И. В., Рахматулина Т.В., Батурин А.А., Корзиков А.В. Применение сканирующей туннельной микроскопии для характеристики зеренносубзеренной структуры СМК никеля после низкотемпературного отжига//Заводская лаборатория. Диагностика материалов 4, 2012, 26-34.

ВЫСОКОТЕМПЕРАТУРНЫЕ ПЬЕЗОКЕРАМИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ИСПОЛНИТЕЛЬНЫХ ЭЛЕМЕНТОВ ПЬЕЗОДВИГАТЕЛЕЙ

Храмцов А.М., Спицин А.И., Сегалла А.Г., Пономарев С.В., Рикконен С.В. НИ Томский государственный университет, Томск, Россия opt@elpapiezo.ru

В настоящее время линейные пьезодвигатели широко применяются в различных отраслях науки и техники, среди которых особое внимание следует уделить областям с высокими температурами рабочей среды: космическая, авиационная промышленность и т.д. Основные характеристики любого пьезодвигателя в первую очередь зависят от свойств пьезокерамического материала, лежащего в его основе. К таким свойствам относятся температура точки Кюри и температурная стабильность электрофизических свойств в диапазоне рабочих температур. Данные факторы создают потребность в исследовании И создании высокотемпературных составов пьезокерамических разработке конструкций исполнительных материалов, И новых элементов пьезоприводов.

В ходе проделанной работы был проведен анализ высокотемпературных составов пьезокерамических материалов отечественных и зарубежных производителей.

Полученные данные, а также разработанные в ходе работы составы высокотемпературных керамик представлены на рис.1.

1. Научные основы разработки материалов с многоуровневой иерархической структурой, в том числе для экстремальных условий эксплуатации

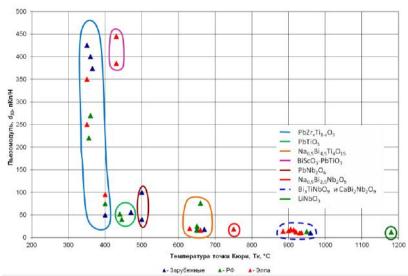


Рис. 1. Пьезомодуль, d₃₃, и температура точки Кюри различных составов высокотемпературных пьезокерамических материалов.

Проведено исследование термостабилизации образцов высокотемпературных составов пьезокерамик при температурах 330 и 700°С, а также разработаны и изготовлены макетные образцы высокотемпературных исполнительных элементов для шагового линейного пьезодвигателя.

ПОЛУЧЕНИЕ ЕСТЕСТВЕННЫХ КОМПОЗИТОВ ДЕФОРМАЦИОННЫМ ВОЗДЕЙСТВИЕМ СДВИГОМ ПОД ДАВЛЕНИЕМ

Даниленко В.Н., Мулюков Р.Р.

Институт проблем сверхпластичности металлов РАН, Уфа, Россия vdan@anrb.ru

Современное развитие техники требует создания новых материалов с повышенными механическими свойствами. Увеличивается доля использования композитов в различных изделиях аэрокосмической промышленности. Преимущества замены обычных металлов и сплавов на металлические композиты связано с повышенными эксплуатационными свойствами последних.

Различают искусственные и естественные композиты. В естественных композитах упрочняющая фаза формируется в результате естественных процессов при термическом воздействии. По виду структура этих материалов мало отличается от структуры искусственных волокнистых и слоистых композиций, но имеет ряд важных особенностей. В естественных композитах упрочнители по механическим свойствам почти не отличаются от упрочнителей искусственных композитов, но имеют очень хорошее сопряжение с матрицей. Поэтому эффект композиционного упрочнения в таких материалах сохраняется при нагревании до высоких температур (вплоть до 0,9 Тпл). Высокая стабильность структуры этих материалов при рабочих температурах обеспечивает значительное сопротивление ползучести и выгодно отличает их от традиционных жаропрочных сплавов. Как правило, естественные композиты получают методом іп situ, управляя процессами структурообразования на этапах кристаллизации или термической обработки. Например, с помощью направленной кристаллизации получены эвтектические композиты на основе Nb, Ti и другие.

В последние годы за рубежом и у нас в стране развиваются деформационные методы получения естественных композитов. Такие методы могут быть перспективны