№ 35

ПРИКЛАДНАЯ ТЕОРИЯ КОДИРОВАНИЯ

УДК 621.391.7

ПРИМЕНЕНИЕ ОДНОГО МЕТОДА РАСПОЗНАВАНИЯ ЛИНЕЙНОГО КОДА ДЛЯ КАНАЛА С ПОДСЛУШИВАНИЕМ

Ю. В. Косолапов, О. Ю. Турченко

Южный федеральный университет, г. Ростов-на-Дону, Россия

Рассматривается модель защиты данных с помощью метода кодового зашумления. Предполагается, что кодируемые информационные блоки длины k содержат фиксированное сообщение \mathbf{m} длины m_l ($m_l \leqslant k$) на фиксированной позиции m_s ($1 \leqslant m_s \leqslant k - m_l + 1$), а наблюдатель получает зашумлённые кодовые слова длины n через q-ичный (q — степень простого числа) симметричный канал с вероятностью p для каждого ненулевого значения ошибки. Целью наблюдателя является нахождение сообщения \mathbf{m} , когда позиция m_s и длина m_l неизвестны. Предложен способ нахождения сообщения \mathbf{m} и получена оценка количества наблюдаемых кодовых слов, достаточного для восстановления сообщения \mathbf{m} этим способом.

Ключевые слова: кодовое зашумление, *q*-ичный симметричный канал, распознавание кода.

DOI 10.17223/20710410/35/7

APPLICATION OF ONE METHOD OF LINEAR CODE RECOGNITION TO THE WIRE-TAP CHANNEL

Y. V. Kosolapov, O. Y. Turchenko

Southern Federal University, Rostov-on-Don, Russia

E-mail: itaim@mail.ru

A security model using the method of code noising is considered. It is assumed that the information blocks of length k contain a fixed message **m** of length m_l ($m_l \leq k$) on a fixed position m_s ($1 \le m_s \le k - m_l + 1$), and an observer gets noisy codewords of length n through a q-ary symmetric channel qSC(p) (q — prime power) with error probability p (p < 1/q) for each non-zero value. The aim of the observer is to find the unknown message \mathbf{m} , when the position m_s and the length m_l are unknown. In this paper, we propose a statistical method for finding message m. The method is based on the idea of code recognition in noisy environment: we test hypothesis H_0 (received vectors have been generated by a conjectural code \mathcal{C}) against the hypothesis H_1 (received vectors have not been generated by $\mathcal C$ or it's subcode). The method is as follows. From the observed vectors, the independent pairwise differences of them are compiled. The resulting vectors are code words of some unknown code $\mathcal C$ noised in a symmetric channel qSC(p(2-qp)). To determine the length m_l and place m_s of the unknown message \mathbf{m} , we recognize the code \mathcal{C} from the calculated differences of the received vectors. For this purpose, we present a code recognition algorithm (called CodeRecognition) and prove that if \mathcal{C} is a linear [n,k] code and $M(\mathcal{C},\alpha,\beta)$ is

the minimum number of vectors (received from the channel qSC(p)) that are sufficient for CodeRecognition algorithm to test the hypothesis H_0 against the hypothesis H_1 by using a constructed statistical criterion, then $M(\mathcal{C}, \alpha, \beta) \leq f^2(k+1)$, where

$$f(x) = \frac{b(1 + (q-2)(1-pq)^x - (q-1)(1-pq)^{2x})^{1/2} - a}{\sqrt{q-1}(1-pq)^x},$$

 α and β are the probabilities of errors of the first kind and the second kind, respectively; $a = \Phi^{-1}(\alpha)$, $b = \Phi^{-1}(1-\beta)$; Φ^{-1} — Laplacian inverse function. We show that the bound above is achieved in the case of Maximum Distance Separable (MDS) codes \mathcal{C} . On the base of this result, we obtain a sufficient number of vectors corresponding to the channel qSC(p(2-qp)). We also present some algorithms for finding the position m_s , the length m_l , and the message \mathbf{m} . The main component of them is the algorithm CodeRecognition.

Keywords: code noising, q-ary symmetric channel, code recognition.

Введение

Рассмотрим информационно-аналитическую систему (ИАС), в которой два легальных участника (отправитель и получатель) связаны каналом без помех, а пассивный наблюдатель подслушивает передаваемые данные по q-ичному (q — степень простого числа) симметричному каналу с вероятностью p для каждого ненулевого значения ошибки. Эта модель является частным случаем модели канала с наблюдением, впервые рассмотренной в [1]. Как и в [1], предполагается, что отправитель для защиты от наблюдения использует метод кодирования смежными классами (метод кодового зашумления). У наблюдателя при подслушивании одного кодового слова из-за наличия помех возникает неопределённость относительно сообщения, которое было закодировано. Вычислению этой неопределённости в неасимптотическом случае для двоичного симметричного канала наблюдения (при q=2) посвящена работа [2], а в [3] показано, что эта неопределённость может быть снята в рамках модели многократной передачи данных. В частности, в [3] найдена оценка количества зашумлённых кодовых слов, соответствующих одному информационному блоку, достаточного для нахождения этого блока с заданными вероятностями ошибок первого и второго рода. Отметим, что на метод определения информационного блока, основанный на результатах работы [3], накладывается ограничение: наблюдаемые векторы должны соответствовать одному и тому же информационному блоку. В настоящей работе рассматривается более общая задача нахождения информационного блока в рамках модели многократной передачи данных. Предполагается, что различные кодируемые информационные блоки содержат фиксированное сообщение на фиксированной позиции, а наблюдатель получает зашумлённые кодовые слова через q-ичный симметричный канал. В работе ставится задача нахождения позиции и длины подвектора. Зная эти параметры, содержание подвектора может быть определено, например, с помощью метода, основанного на результатах работы [3]. Отметим, что для случая q=2 задача в такой постановке частично решена [4]. Рассмотрение q-ичного симметричного канала представляет не только теоретический интерес. Эта модель канала, например, в последнее время исследуется как адекватная модель пакетной передачи данных [5], а также как модель генерации ошибок в протоколах гомоморфного шифрования [6].

Работа имеет следующую структуру: п. 1 посвящён детальному описанию информационно-аналитической системы. В п. 2 описан метод, разработанный для решения поставленной задачи. Этот метод описан в общем виде, так как может быть применён

для решения других задач, например задач типа распознавания кода. В п. 3 получены оценки применимости разработанного метода в рамках поставленной задачи и построены соответствующие алгоритмы.

1. Информационно-аналитическая система

Пусть информационными блоками являются векторы длины k над полем Галуа \mathbb{F}_q мощности q, где q—степень простого числа. Предполагается, что в момент времени $t \in \mathbb{N}$ информационный блок $\mathbf{s}^{(t)} \in \mathbb{F}_q^k$ имеет вид $\mathbf{s}^{(t)} = (\mathbf{m}_1^{(t)} \parallel \mathbf{m} \parallel \mathbf{m}_2^{(t)})$, где подвектор $\mathbf{m} \in \mathbb{F}_q^{m_l}$ постоянный для всех t, а подвекторы $\mathbf{m}_1^{(t)}$ и $\mathbf{m}_2^{(t)}$ распределены случайно и равновероятно со значениями из $\mathbb{F}_q^{m_s-1}$ и $\mathbb{F}_q^{k-[m_l+m_s]+1}$ соответственно; запись $(\mathbf{a} \parallel \mathbf{b})$ здесь и далее обозначает конкатенацию векторов \mathbf{a} и \mathbf{b} . Перед передачей в канал информационные сообщения кодируются отправителем с помощью метода кодового зашумления [2], а именно: для зафиксированных натуральных чисел k и n (k < n) легальными участниками выбирается $((n-k) \times k)$ -матрица P с элементами из поля \mathbb{F}_q , а каждое сообщение $\mathbf{s}^{(t)}$ длины k кодируется по следующему правилу:

$$\operatorname{Enc}(\mathbf{s}^{(t)}) = (\mathbf{s}^{(t)} + \mathbf{K}^{(t)}P \parallel \mathbf{K}^{(t)}) = \mathbf{c}^{(t)} = (\mathbf{c}_1^{(t)} \parallel \mathbf{K}^{(t)}), \tag{1}$$

где $\mathbf{K}^{(t)}$ —случайно и равновероятно выбранный вектор из \mathbb{F}_q^{n-k} . Матрица P и правило кодирования (1) известны всем участникам ИАС (в том числе и наблюдателю), поэтому при отсутствии помех в канале между отправителем и получателем правило декодирования имеет вид $\mathrm{Dec}(\mathbf{c}^{(t)}) = \mathbf{K}^{(t)}P + \mathbf{c}_1^{(t)} = \mathbf{s}^{(t)}$.

Предположим, что наблюдатель передаваемые кодовые слова подслушивает через q-ичный симметричный канал, в котором вероятность возникновения ошибки в каждом символе равна (q-1)p, $0 , а именно: если <math>\mathbf{c}^{(t)}$ — вектор длины n на входе канала наблюдения, а $\mathbf{z}^{(t)} = \mathbf{c}^{(t)} + \mathbf{e}^{(t)}$ — вектор на выходе этого канала, то значения координат вектора ошибок $\mathbf{e}^{(t)} = (e_1^{(t)}, \dots, e_n^{(t)})$ принимают значения в соответствии со следующим распределением вероятностей:

$$\Pr\{\mathbf{e}_{i}^{(t)} = l\} = \begin{cases} p, & l \in \mathbb{F}_{q}^{*} = \mathbb{F}_{q} \setminus \{0\}, \\ 1 - (q - 1)p, & l = 0, \end{cases} \qquad i \in \{1, \dots, n\}.$$

В дальнейшем такой q-ичный симметричный канал будем обозначать qSC(p). Наблюдателю позиции m_s подвектора \mathbf{m} и его длина m_l неизвестны. Целью наблюдателя является нахождение неизвестного подвектора \mathbf{m} при многократной передаче сообщений $\mathbf{s}^{(t)}$, закодированных по правилу (1). Естественно полагать, что эта задача решается наблюдателем последовательно: сначала находятся неизвестные позиция m_s и длина m_l , а затем само сообщение \mathbf{m} . Отметим, что при известных m_s и m_l задача нахождения содержания вектора \mathbf{m} может быть решена методом, основанным на результатах работы [3]. Поэтому ниже строится способ нахождения неизвестных значений m_s и m_l .

Наблюдателем выдвигается гипотеза $H_{i,j}$ о том, что $m_s=i$ и $m_l\geqslant j$ (т. е. предполагаемая длина j не превышает истинного значения длины сообщения). Далее для обозначения векторов и матриц в рамках данной гипотезы будем использовать верхний индекс (i,j). В этом случае матрица P представима в блочном виде: $P=[P_1^{(i,j)}|P_2^{(i,j)}|P_3^{(i,j)}]$, где $P_1^{(i,j)}$ —первые i-1 столбцов матрицы P; $P_2^{(i,j)}$ —столбцы матрицы P с номерами от i до i+j-1; $P_3^{(i,j)}$ —последние k-(i+j)+1 столбцов матрицы P. В рамках этой гипотезы наблюдаемый в момент времени t вектор $\mathbf{z}^{(t)}=\mathbf{c}^{(t)}+\mathbf{e}^{(t)}$

имеет следующий вид:

$$\mathbf{z}^{(t)} = (\widehat{\mathbf{m}}_{1}^{(t)} + \mathbf{K}^{(t)} P_{1}^{(i,j)} + \mathbf{e}_{1}^{(t)} \parallel \widehat{\mathbf{m}} + \mathbf{K}^{(t)} P_{2}^{(i,j)} + \mathbf{e}_{2}^{(t)} \parallel \widehat{\mathbf{m}}_{2}^{(t)} + \mathbf{K}^{(t)} P_{3}^{(i,j)} + \mathbf{e}_{3}^{(t)} \parallel \mathbf{K}^{(t)} + \mathbf{e}_{4}^{(t)}), (2)$$

где $\mathbf{e}^{(t)} = (\mathbf{e}_1^{(t)} \parallel \mathbf{e}_2^{(t)} \parallel \mathbf{e}_3^{(t)} \parallel \mathbf{e}_4^{(t)})$ — вектор помехи в канале; $\mathbf{e}_1^{(t)} \in \mathbb{F}_q^{i-1}$; $\mathbf{e}_2^{(t)} \in \mathbb{F}_q^{i}$; символ «^» означает, что соответствующие подвекторы могут отличаться от истинных, если гипотеза неверна.

Для подмножества $S = \{i_1, \ldots, i_u\}$ множества $\{1, \ldots, n\}$ рассмотрим линейный оператор проекции $\pi_S : \mathbb{F}^n \to \mathbb{F}^u$, ставящий в соответствие каждому вектору $\mathbf{x} = (x_1, \ldots, x_n)$ из \mathbb{F}^n вектор $\mathbf{x}_S = (x_{i_1}, \ldots, x_{i_u})$. Рассмотрим множество координат $\tau(i, j) = \{i, \ldots, i + j - 1\} \cup \{k + 1, \ldots, n\}$ и выборку из N векторов (N чётное)

$$\mathbf{Z}_{\tau(i,j)} = \left(\mathbf{z}_{\tau(i,j)}^{(1)}, \mathbf{z}_{\tau(i,j)}^{(2)}, \dots, \mathbf{z}_{\tau(i,j)}^{(N)}\right),\tag{3}$$

где $\mathbf{z}_{\tau(i,j)}^{(t)} = \pi_{\tau(i,j)}(\widehat{\mathbf{z}}^{(t)})$ — проекция наблюдаемого вектора $\mathbf{z}^{(t)}$ на множество координат $\tau(i,j)$. По выборке (3) построим набор векторов мощности N/2:

$$\widetilde{\mathbf{Z}} = (\widetilde{\mathbf{z}}^{(1)}, \widetilde{\mathbf{z}}^{(2)}, \dots, \widetilde{\mathbf{z}}^{(N/2)}). \tag{4}$$

Здесь $\widetilde{\mathbf{z}}^{(t)} = \mathbf{z}_{\tau(i,j)}^{(2t)} - \mathbf{z}_{\tau(i,j)}^{(2t-1)}, \ t=1,\dots,N/2$. С учётом (2), вектор $\widetilde{\mathbf{z}}^{(t)}$ в выборке (4) представим в виде

$$\widetilde{\mathbf{z}}^{(t)} = \left((\mathbf{K}^{(2t)} - \mathbf{K}^{(2t-1)}) P_2^{(i,j)} + \mathbf{e}_2^{(2t)} - \mathbf{e}_2^{(2t-1)} \parallel \mathbf{K}^{(2t)} - \mathbf{K}^{(2t-1)} + \mathbf{e}_4^{(2t)} - \mathbf{e}_4^{(2t-1)} \right) = \\
= \left(\mathbf{K}^{(2t)} - \mathbf{K}^{(2t-1)} \right) \left[P_2^{(i,j)} \parallel I_{n-k} \right] + \left(\mathbf{e}_2^{(2t)} - \mathbf{e}_2^{(2t-1)} \parallel \mathbf{e}_4^{(2t)} - \mathbf{e}_4^{(2t-1)} \right), \tag{5}$$

где I_{n-k} — единичная матрица. Далее линейный код \mathcal{C} размерности k и длины n будем называть, как обычно, [n,k]-кодом [7], а его порождающую матрицу обозначим $G(\mathcal{C})$. Фиксированный набор базисных векторов кода \mathcal{C} обозначим $B_{\mathcal{C}}$, а множество всех различных базисов кода \mathcal{C} — символом $\mathcal{B}_{\mathcal{C}}$.

Лемма 1. Пусть выборка $\mathbf{Z}_{\tau(i,j)}$ вида (3) построена по векторам вида (2), наблюдаемым на выходе $q\mathrm{SC}(p)$; $\mathcal{C}^{(i,j)} - [n-k+j,n-k]$ -код с порождающей матрицей $G(\mathcal{C}^{(i,j)}) = [P_2^{(i,j)}|I_{n-k}]$; $H_{i,j}$ —выдвигаемая гипотеза.

- 1) Если $i = m_s$ и $j \leq m_l$, то набор $\widetilde{\mathbf{Z}}$ вида (4) представляет собой набор из зашумлённых кодовых слов кода $\mathcal{C}^{(i,j)}$, полученных из $q\mathrm{SC}(\widehat{p})$, где $\widehat{p} = p(2-pq)$.
- 2) Пусть множество координат $\{i, \ldots, i+j-1\}$ не вложено в $\{m_s, \ldots, m_s+m_l-1\}$. Тогда вероятность того, что выборка $\widetilde{\mathbf{Z}}$ представляет собой набор из зашумлённых кодовых слов кода $\mathcal{C}^{(i,j)}$, полученных из $q\mathrm{SC}(\widehat{p})$, не превосходит $(1/q)^{N/2}$.

Доказательство. Так как, по предположению, гипотеза верная, то из (5) следует, что набор (4) является набором из зашумлённых кодовых слов линейного кода $\mathcal{C}^{(i,j)}$ с порождающей матрицей $G(\mathcal{C}^{(i,j)}) = [P_2^{(i,j)}|I_{n-k}].$

Покажем, что $\Pr\{e_i=l\}=\widehat{p}$ для всех $i\in\{1,\ldots,n\},\ l\in\mathbb{F}_q^*$. Поскольку в (5) участвует разность помех, реализованных в канале $q\mathrm{SC}(p)$, то по формуле полной вероятности вероятность $\Pr\{e_i=l\}$ для ненулевого l равна сумме вероятностей всевозможных разностей помех, которые в результате дают l. Таких разностей ровно q, причём разностей, содержащих нулевое значение, ровно две: l-0 и 0-(q-l). Остальные разности

содержат ненулевые значения в качестве уменьшаемого и вычитаемого, которые равновероятны (с вероятностью p), поэтому каждая пара реализуется с вероятностью p^2 , их количество равно q-2. Таким образом,

$$\widehat{p} = 2(1 - (q-1)p)p + \sum_{m=1}^{q-2} p^2 = 2p - 2(q-1)p^2 + p^2(q-2) = p(2-pq).$$

Докажем второе утверждение леммы. Пусть R—множество координат из $\{i,\ldots,i+j-1\}$, которые отсутствуют в $\{m_s,\ldots,m_s+m_l-1\}$. Тогда вектор из выборки (4) представляет собой сумму зашумлённого кодового слова кода $\mathcal{C}^{(i,j)}$ и случайного равновероятного вектора \mathbf{g} веса |R| (координаты этого вектора представляют собой координаты разности векторов $\mathbf{m}_1^{(2t)} - \mathbf{m}_1^{(2t-1)}$ или $\mathbf{m}_2^{(2t)} - \mathbf{m}_2^{(2t-1)}$). Таким образом, для того чтобы вектор из выборки (4) представлял собой зашумлённое кодовое слово кода $\mathcal{C}^{(i,j)}$, вектор \mathbf{g} должен быть нулевым. Вероятность этого события для одного вектора равна $(1/q)^{|R|}$. Тогда для всей выборки вероятность соответствующего события есть $(1/q)^{|R|N/2}$. Наибольшее значение этой вероятности достигается при |R|=1.

Отметим, что функция g(x) = x(2-xq) при каждом натуральном $q \ge 2$ возрастает от 0 до 1/q на отрезке [0,1/q]. Следовательно, набор (4) представляет собой набор кодовых слов, более зашумлённых, чем слова из набора (3).

В силу леммы 1, проверка верности гипотез наблюдателем сводится к задаче распознавания кода по зашумлённому набору векторов. Заметим, что эта задача имеет несколько способов решения [8, 9]. В настоящей работе применяется метод, схожий с методом из работы [8], идея которого состоит в том, что вес синдрома зашумлённого в двоичном симметричном канале (q=2) кодового слова в среднем меньше веса синдрома произвольного (случайно выбранного) вектора. Обобщённый метод для любого допустимого q приведён далее.

2. Метод распознавания кода в канале qSC(p)

Рассмотрим линейный [n, k, d]-код \mathcal{C} ([n, k]-код с кодовым расстоянием d) и ему дуальный [n, n-k]-код \mathcal{C}^{\perp} . Запись (\mathbf{a}, \mathbf{b}) обозначает скалярное произведение векторов \mathbf{a} и \mathbf{b} , а для произвольного вектора $\mathbf{h} \in \mathbb{F}_q^n$ символ \mathbf{h}^{\perp} обозначает подпространство размерности n-1, ортогональное вектору \mathbf{h} .

Лемма 2. Пусть $\mathbf{h} \in \mathbb{F}_q^n$, $\mathbf{c} \in \mathbf{h}^\perp$, $\mathbf{z} = \mathbf{c} + \mathbf{e}$ — вектор на выходе $q\mathrm{SC}(p)$. Тогда

$$\Pr\{(\mathbf{z}, \mathbf{h}) = 0\} = q^{-1}(1 + (q - 1)(1 - pq)^{w(\mathbf{h})}),\tag{6}$$

где $w(\mathbf{h})$ — вес Хэмминга вектора \mathbf{h} .

Доказательство. Справедлива следующая цепочка равенств:

$$\Pr\{(\mathbf{z}, \mathbf{h}) = 0\} = \Pr\{(\mathbf{c} + \mathbf{e}, \mathbf{h}) = 0\} = \Pr\{(\mathbf{e}, \mathbf{h}) = 0\} =$$

$$= \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}\} = \sum_{i=0}^{n} A_{i}^{\perp} p^{i} (1 - (q-1)p)^{n-i} = A_{\mathbf{h}^{\perp}}(p, 1 - (q-1)p),$$
(7)

где $A_{\mathbf{h}^{\perp}}(x,y) = \sum_{i=0}^{n} A_{i}^{\perp} x^{i} y^{n-i}$ — энумератор весов кода \mathbf{h}^{\perp} ; A_{i}^{\perp} — число векторов веса i в коде \mathbf{h}^{\perp} . Для [n,1]-кода $\langle \mathbf{h} \rangle$, порождённого вектором \mathbf{h} , рассмотрим энумератор весов $A_{\mathbf{h}}(x,y)$. По определению $A_{\mathbf{h}}(x,y) = \sum_{i=0}^{n} A_{i} x^{i} y^{n-i}$, где A_{i} — число векторов веса i

в коде $\langle \mathbf{h} \rangle$. Так как $\dim(\langle \mathbf{h} \rangle) = 1$, то $A_{\mathbf{h}}(x,y) = y^n + (q-1)x^{\mathbf{w}(\mathbf{h})}y^{n-\mathbf{w}(\mathbf{h})}$. Воспользуемся тождеством Мак-Вильямс и получим

$$A_{\mathbf{h}^{\perp}}(x,y) = \frac{1}{q}((y + (q-1)x)^{n} + (q-1)(y-x)^{\mathbf{w}(\mathbf{h})}(y + (q-1)x)^{n-\mathbf{w}(\mathbf{h})}.$$

С учётом (7), подставив x=p и y=1-(q-1)p в $A_{\mathbf{h}^\perp}(x,y)$, получим (6). \blacksquare

Лемма 3. Пусть $\mathbf{z}-$ случайно и равновероятно выбранный из \mathbb{F}_q^n вектор. Тогда $\Pr\{(\mathbf{z},\mathbf{h})=0\}=q^{-1}.$

Доказательство.
$$\Pr\{(\mathbf{z}, \mathbf{h}) = 0\} = \Pr\{\mathbf{z} \in \mathbf{h}^{\perp}\}.$$
 Ho $\Pr\{\mathbf{z} \in \mathbf{h}^{\perp}\} = \frac{|\mathbf{h}^{\perp}|}{|\mathbb{F}_q^n|} = q^{-1}.$

Лемма 4. Пусть **c** — вектор, случайно и равновероятно выбранный из кода C' длины n; $C' \nsubseteq C$; $\mathbf{z} = \mathbf{c} + \mathbf{e}$ — вектор на выходе канала $q\mathrm{BC}(p)$. Тогда в любом базисе кода C^{\perp} найдётся такой \mathbf{h} , что $\mathrm{Pr}\{(\mathbf{z},\mathbf{h})=0\}=q^{-1}$.

Доказательство. Так как $C' \nsubseteq C$, в любом базисе кода C^{\perp} всегда найдётся такой вектор \mathbf{h} , что $\mathbf{h} \notin C'^{\perp}$. Выберем такой \mathbf{h} . Пусть $\mathbf{h}_{\mathbf{a}}^{\perp}$ —это смежный класс подпространства \mathbf{h}^{\perp} вида $\mathbf{h}_{\mathbf{a}}^{\perp} = \mathbf{a} + \mathbf{h}^{\perp}$, $\mathbf{a} \in \mathbb{F}_q^n$. Так как $\dim(\mathbf{h}^{\perp}) = n-1$, то $|\mathbb{F}_q^n/\mathbf{h}^{\perp}| = q$. Рассмотрим множество $\mathcal{R} \subset \mathbb{F}_q^n$ мощности q-1, такое, что $\left(\bigcup_{\mathbf{a} \in \mathcal{R}} \mathbf{h}_{\mathbf{a}}^{\perp}\right) \cup \mathbf{h}^{\perp} = \mathbb{F}_q^n$. Символом $-\mathbf{a}$ обозначим такой вектор, что $-\mathbf{a} + \mathbf{a} = \mathbf{0} \in \mathbb{F}_q^n$. Так как $-\mathbf{a} \in \mathcal{R}$ для любого $\mathbf{a} \in \mathcal{R}$, то

$$\begin{aligned} \Pr\{(\mathbf{z}, \mathbf{h}) &= 0\} = \Pr\{\mathbf{z} \in \mathbf{h}^{\perp}\} = \Pr\{\mathbf{c} + \mathbf{e} \in \mathbf{h}^{\perp}\} = \\ &= \Pr\{\mathbf{c} \in \mathbf{h}^{\perp}\} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}\} + \sum_{\mathbf{a} \in \mathcal{R}} \Pr\{\mathbf{c} \in \mathbf{h}^{\perp}_{\mathbf{a}}\} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}_{-\mathbf{a}}\} = \\ &= \Pr\{\mathbf{c} \in C' \cap \mathbf{h}^{\perp}\} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}\} + \sum_{\mathbf{a} \in \mathcal{R}} \Pr\{\mathbf{c} \in C' \cap \mathbf{h}^{\perp}_{\mathbf{a}}\} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}_{-\mathbf{a}}\} = \\ &= \frac{|\mathbf{h}^{\perp} \cap C'|}{|C'|} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}\} + \sum_{\mathbf{a} \in \mathcal{R}} \frac{|\mathbf{h}^{\perp}_{\mathbf{a}} \cap C'|}{|C'|} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}_{-\mathbf{a}}\}. \end{aligned}$$

Учитывая равенство $|\mathbf{h}_{\mathbf{a}}^{\perp} \cap C'| = |\mathbf{h}^{\perp} \cap C'|$ для всех $\mathbf{a} \in \mathcal{R}$, получим

$$\Pr\{(\mathbf{z}, \mathbf{h}) = 0\} = \frac{|\mathbf{h}^{\perp} \cap C'|}{|C'|} \left(\Pr\{\mathbf{e} \in \mathbf{h}^{\perp}\} + \sum_{\mathbf{a} \in \mathcal{R}} \Pr\{\mathbf{e} \in \mathbf{h}^{\perp}_{-\mathbf{a}}\} \right) = \frac{|\mathbf{h}^{\perp} \cap C'|}{|C'|}.$$

Пусть размерность кода C' равна r. Так как $\dim(\mathbf{h}^{\perp}) = n-1$ и $C' \not\subseteq \mathbf{h}^{\perp}$ (по построению $\mathbf{h} \notin C'^{\perp}$), то $\dim(\mathbf{h}^{\perp} \cap C') = r-1$. Тогда $\frac{|\mathbf{h}^{\perp} \cap C'|}{|C'|} = \frac{q^{r-1}}{q^r} = \frac{1}{q}$. Отсюда следует доказываемое утверждение. \blacksquare

Пусть $\mathbf{h} \in \mathbb{F}_q^n$, $\mathbf{z} \in \mathbb{F}_q^n$. Рассмотрим случайную величину $X_{\mathbf{h},\mathbf{z}}$, принимающую значение 0, если $(\mathbf{h},\mathbf{z})=0$, и значение 1 при $(\mathbf{h},\mathbf{z})\neq 0$. Если $\mathbf{c}\in \mathbf{h}^\perp$, $\mathbf{z}=\mathbf{c}+\mathbf{e}$ — вектор на выходе $q\mathrm{BC}(p)$, то соответствующую случайную величину $X_{\mathbf{h},\mathbf{z}}$ будем обозначать $X_{\mathbf{h},\mathbf{z}}^0$; если $\mathbf{c}'\in C'\nsubseteq \mathbf{h}^\perp$, $\mathbf{z}=\mathbf{c}'+\mathbf{e}$ — вектор на выходе $q\mathrm{BC}(p)$ или если \mathbf{z} — случайно и равновероятно выбранный из \mathbb{F}_q^n вектор, то случайную величину обозначим $X_{\mathbf{h},\mathbf{z}}^1$. Пусть $\mathbf{p}_0=\Pr\{X_{\mathbf{h},\mathbf{z}}^0=1\}$, тогда из (6) получаем

$$\mathbf{p}_0 = 1 - \frac{1}{q} \left(1 + (q - 1)(1 - pq)^{\mathbf{w}(\mathbf{h})} \right) = \frac{q - 1}{q} (1 - (1 - pq)^{\mathbf{w}(\mathbf{h})}). \tag{8}$$

Пусть $\mathbf{p}_1 = \Pr\{X_{\mathbf{h},\mathbf{z}}^1 = 1\}$. Из лемм 3 и 4 получаем

$$\mathbf{p}_1 = 1 - \frac{1}{q} = \frac{q - 1}{q}.\tag{9}$$

Для $\mathbf{h} \in \mathbb{F}_q^n$, $\mathcal{S} \subseteq \mathbb{F}_q^n$ и $T \geqslant 0$ обозначим через $\mathrm{ST}(\mathbf{h},\mathcal{S},T)$ статистический критерий, согласно которому принимается решение о том, что выборка \mathcal{S} является набором зашумлённых векторов из \mathbf{h}^\perp , если $\sum_{\widetilde{\mathbf{z}} \in \mathcal{S}} X_{\mathbf{h},\mathbf{z}} \leqslant T$. Рассмотрим случайные величины

$$X = \sum_{\mathbf{z} \in \mathcal{S}}^{M} X_{\mathbf{h}, \mathbf{z}}$$
 и $X_i = \sum_{\mathbf{z} \in \mathcal{S}}^{M} X_{\mathbf{h}, \mathbf{z}}^i$, $i = 0, 1$.

Теорема 1. Пусть $\mathbf{h} \in \mathbb{F}_q^n$, \mathcal{S} — набор $M_{\mathbf{h}}$ векторов, полученный из канала $q\mathrm{SC}(p)$. При выборе статистического критерия $\mathrm{ST}(\mathbf{h},\mathcal{S},T_{\mathbf{h}})$ проверки гипотезы $H_0:X=X_0$ против альтернативы $H_1:X=X_1$ вероятности ошибок первого и второго рода не превышают α и β соответственно для

$$M_{\mathbf{h}} = \left(\frac{b\sqrt{(q-1)(1-(1-pq)^{\mathbf{w}(\mathbf{h})})(1+(q-1)(1-pq)^{\mathbf{w}(\mathbf{h})})} - a}{(\sqrt{q-1})(1-pq)^{\mathbf{w}(\mathbf{h})}}\right)^{2},$$

$$T_{\mathbf{h}} = M_{\mathbf{h}} \frac{q-1}{q} + a\sqrt{M_{\mathbf{h}} \frac{q-1}{q^{2}}},$$
(10)

где $a = \Phi^{-1}(\alpha); b = \Phi^{-1}(1-\beta); \Phi^{-1}$ — обратная функция Лапласа.

Доказательство. Для каждого $i \in \{0,1\}$ случайная величина X_i является суммой бернуллиевских случайных величин. Тогда по центральной предельной теореме случайная величина X_i асимптотически нормальна и её математическое ожидание равно $M_{\mathbf{h}}\mathbf{p}_i$, а дисперсия — $M_{\mathbf{h}}\mathbf{p}_i(1-\mathbf{p}_i)$. Пусть α и β — выбранные ошибки первого и второго рода соответственно при использовании статистического критерия $\mathrm{ST}(\mathbf{h},\mathcal{S},T_{\mathbf{h}})$. Тогда при проверке гипотезы $H_0: X = X_0$ против альтернативы $H_1: X = X_1$ имеют место равенства

$$\Pr\left\{\sum_{\mathbf{z}\in\mathcal{S}}X_{\mathbf{h},\mathbf{z}}^{1}\leqslant T_{\mathbf{h}}\right\} = \alpha, \quad \Pr\left\{\sum_{\mathbf{z}\in\mathcal{S}}X_{\mathbf{h},\mathbf{z}}^{0}\leqslant T_{\mathbf{h}}\right\} = 1 - \beta.$$

Учитывая асимптотическую нормальность случайных величин X_0 и X_1 , получим

$$\begin{cases}
\Phi\left(\frac{T_{\mathbf{h}} - M_{\mathbf{h}}\mathbf{p}_{1}}{\sqrt{M_{\mathbf{h}}\mathbf{p}_{1}(1 - \mathbf{p}_{1})}}\right) = \alpha, \\
\Phi\left(\frac{T_{\mathbf{h}} - M_{\mathbf{h}}\mathbf{p}_{0}}{\sqrt{M_{\mathbf{h}}\mathbf{p}_{0}(1 - \mathbf{p}_{0})}}\right) = 1 - \beta,
\end{cases}$$

или

$$\begin{cases} T_{\mathbf{h}} = M_{\mathbf{h}} \mathbf{p}_1 + \Phi^{-1}(\alpha) \sqrt{M_{\mathbf{h}} \mathbf{p}_1 (1 - \mathbf{p}_1)}, \\ T_{\mathbf{h}} = M_{\mathbf{h}} \mathbf{p}_0 + \Phi^{-1} (1 - \beta) \sqrt{M_{\mathbf{h}} \mathbf{p}_0 (1 - \mathbf{p}_0)}. \end{cases}$$

В результате имеем

$$\begin{cases}
T_{\mathbf{h}} = M_{\mathbf{h}} \mathbf{p}_1 + \Phi^{-1}(\alpha) \sqrt{M_{\mathbf{h}} \mathbf{p}_1 (1 - \mathbf{p}_1)}, \\
M_{\mathbf{h}} = \left(\frac{\Phi^{-1} (1 - \beta) \sqrt{\mathbf{p}_0 (1 - \mathbf{p}_0)} - \Phi^{-1}(\alpha) \sqrt{\mathbf{p}_1 (1 - \mathbf{p}_1)}}{\mathbf{p}_1 - \mathbf{p}_0} \right)^2.
\end{cases}$$

Подставив значение \mathbf{p}_0 и \mathbf{p}_1 из (8) и (9), получим искомые выражения для $T_{\mathbf{h}}$ и $M_{\mathbf{h}}$.

Замечание 1. В доказательстве теоремы используется аппроксимация функции распределения F случайной величины $X_i, i \in \{0,1\}$, к функции Лапласа Φ . Поэтому в полученных формулах возникают погрешности, влияющие на доверительные вероятности. В соответствии с неравенством Берри — Эссеена [10, с. 75] погрешность для α

ятности. В соответствии с неравенством Берри — Эссеена [10, с. 75] погрешность для
$$\alpha$$
 меньше, чем $\frac{\mathbf{p}_0^2 + (1 - \mathbf{p}_0)^2}{\sqrt{\mathbf{p}_0(1 - \mathbf{p}_0)M_\mathbf{h}}}$, а для β меньше, чем $\frac{\mathbf{p}_1^2 + (1 - \mathbf{p}_1)^2}{\sqrt{\mathbf{p}_1(1 - \mathbf{p}_1)M_\mathbf{h}}}$.

Для каждого $p \in (0,1/q)$ и $q \geqslant 2$ рассмотрим непрерывную функцию

$$A(x) = 1 + (q-2)(1-pq)^{x} - (q-1)(1-pq)^{2x}.$$

По построению, функция A(x) для натуральных x всегда положительная. Непосредственно подставив в (10) выражение для \mathbf{p}_1 из формулы (9) и проведя необходимые преобразования, получим

$$M_{\mathbf{h}} = \left(\frac{b\sqrt{A(\mathbf{w}(\mathbf{h}))} - a}{\sqrt{q - 1}(1 - pq)^{\mathbf{w}(\mathbf{h})}}\right)^{2}.$$

Рассмотрим функцию $f(x) = \frac{bA(x)^{1/2} - a}{\sqrt{q-1}(1-pq)^x}$. Производная f'(x) имеет вид

$$f'(x) = \frac{b(A(x)^{1/2})'\sqrt{q-1}(1-pq)^x - (bA(x)^{1/2}-a)\sqrt{q-1}(1-pq)^x \ln(1-pq)}{(q-1)(1-pq)^{2x}} = \frac{b(A(x)^{1/2})' - (bA(x)^{1/2}-a)\ln(1-pq)}{\sqrt{q-1}(1-pq)^x} = \frac{(-b/2A(x)^{1/2}-b/2A(x)^{-1/2}-b/2A(x)^{-1/2}(q-1)(1-pq)^{2x}+a)\ln(1-pq)}{\sqrt{q-1}(1-pq)^x}.$$

Отсюда получаем, что при $p\in (0,1/q)$ и $q\geqslant 2$ производная равна нулю (f'(x)=0) тогда и только тогда, когда

$$A(x)^{1/2} + A(x)^{-1/2} + A(x)^{-1/2}(q-1)(1-pq)^{2x} = \frac{2a}{b}.$$
 (11)

Заметим, что $A(x)^{1/2} + A(x)^{-1/2}(1 + (q-1)(1-pq)^{2x}) \geqslant A(x)^{1/2} + A(x)^{-1/2} \geqslant 2$, так как функция A(x) положительная для натуральных x и $y+1/y\geqslant 2$ для y>0. Если a/b<1, то уравнение (11) решений не имеет, поэтому функция f(x) (а также и $f^2(x)$) либо монотонно убывает, либо монотонно возрастает для x>0. Для произвольных $p\in (0,1/q)$ и $q\geqslant 2$ вычисления показывают, что $f(1)\leqslant f(2)$, следовательно, функция f(x) возрастающая. Таким образом, справедлива

Лемма 5. Пусть $\mathbf{h} \neq \mathbf{h}', w(\mathbf{h}) > w(\mathbf{h}')$ и в рамках условий теоремы 1 выполняется неравенство a/b < 1. Тогда $M_{\mathbf{h}} \geqslant M_{\mathbf{h}'}$.

Таким образом, чем меньше вес вектора \mathbf{h} , тем меньше может быть мощность выборки $\mathcal S$ зашумлённых векторов для применения статистического критерия $\mathrm{ST}(\mathbf{h},\mathcal S,T_{\mathbf{h}}).$

Ниже приведён алгоритм 1 проверки гипотезы H_0 против альтернативы H_1 . Естественно считать, что чем меньший размер выборки требуется для применения статистического критерия при заданных уровнях ошибок первого и второго рода, тем эффективнее критерий. В соответствии с леммой 5, для применения статистического критерия следует выбирать базисные векторы малого веса. Для этого нам понадобится

понятие минимального базиса кода, а именно: минимальным базисом кода \mathcal{C} будем называть такой базис $B_{\mathcal{C}}^0 \in \mathcal{B}_{\mathcal{C}}$, что в любом другом базисе $B_{\mathcal{C}} \in \mathcal{B}_{\mathcal{C}}$ найдётся базисный вектор, вес которого не меньше веса любого вектора из $B_{\mathcal{C}}^0$. Отметим, что минимальный базис определяется неоднозначно.

Алгоритм 1. CodeRecognition($\mathcal{C}, \mathcal{S}, p, \alpha, \beta$) (распознавание кода)

Вход: \mathcal{C} — предполагаемый код, \mathcal{S} — выборка, p — вероятность ошибки в $q\mathrm{SC}(p)$, α и β — доверительные вероятности ошибок 1 и 2 рода для (10).

- 1: Найти минимальный базис $B^0_{\mathcal{C}^\perp}$ кода \mathcal{C}^\perp .
- 2: Для всех $\mathbf{h} \in B^0_{\mathcal{C}^\perp}$
- 3: найти $M_{\mathbf{h}}$ и $T_{\mathbf{h}}$ согласно теореме 1;
- 4: выбрать набор S_h из S мощности M_h ;
- 5: проверить с помощью критерия $ST(\mathbf{h}, \mathcal{S}_{\mathbf{h}}, T_{\mathbf{h}})$ принадлежность выборки $\mathcal{S}_{\mathbf{h}}$ каждому пространству \mathbf{h}^{\perp} .
- 6: **Если** выборка $\mathcal{S}_{\mathbf{h}}$ является набором зашумлённых векторов из \mathbf{h}^{\perp} для каждого \mathbf{h} из $B^0_{\mathcal{C}^{\perp}},$ **то**
- 7: выборка S полагается набором зашумлённых кодовых слов кода C, в противном случае считается, что S не является набором зашумлённых кодовых слов кода C.

На шаге 1 алгоритма предлагается искать минимальный базис, так как в этом случае потребуется наименьшее в рамках предлагаемого способа количество наблюдаемых векторов. Для произвольного кода задача нахождения минимального базиса представляется трудной, но для некоторых кодов такой базис может быть найден легко. К последним относятся коды с максимальным достижимым расстоянием (МДР-коды) и равновесные коды. Так как порождающая матрица линейного [n, n-k]-кода \mathcal{C}^{\perp} может быть приведена к псевдосистематическому виду [7], то вес каждого вектора в $B_{\mathcal{C}^{\perp}}^0$ не превышает k+1. Из лемм 2 и 5 следует

Теорема 2. Пусть C - [n, k]-код, $M(C, \alpha, \beta)$ — минимально необходимое количество векторов, достаточное для проверки алгоритмом CodeRecognition гипотезы H_0 против гипотезы H_1 . Тогда $M(C, \alpha, \beta) \leq f^2(k+1)$, причём равенство выполняется в случае, когда C - MДР-код.

3. Поиск подвектора в подслушанных данных

Рассмотрим ИАС, описанную в п. 1. Предлагается следующий способ (алгоритм 2) определения длины и позиции сообщения \mathbf{m} , основанный на лемме 1. Он заключается в том, что если выборка $\widetilde{\mathbf{Z}}$ вида (4) для гипотезы $H_{i,j}$ представляет собой набор кодовых слов кода $\mathcal{C}^{(i,j)}$, то гипотеза $H_{i,j}$ верна. Тот факт, что выборка (4) является набором зашумлённых кодовых слов кода $\mathcal{C}^{(i,j)}$, можно проверить с помощью статистического критерия $\mathrm{ST}(\mathbf{h},\widetilde{\mathbf{Z}},T)$, где \mathbf{h} пробегает базис кода $(\mathcal{C}^{(i,j)})^{\perp}$, а объём выборки $\widetilde{\mathbf{Z}}$ и параметр T для каждого \mathbf{h} определяются в соответствии с теоремой 1. Таким образом, проверяя гипотезы, можно найти длину m_l и позицию m_s сообщения \mathbf{m} . Заметим, что при проверке текущей гипотезы $H_{i,j}$ необязательно перехватывать новые сообщения, так как можно использовать уже перехваченные сообщения, использовавшиеся для проверки предыдущих гипотез. Если же для какой-либо гипотезы недостаточно перехваченных ранее сообщений, то необходимо дополнительно перехватить ровно столько, сколько не хватило.

Поясним алгоритм ShiftAndLenFinding. Сначала ищется начальная координата неизвестного вектора \mathbf{m} , при этом на основании п. 1 леммы 1 полагаем, что длина этого

Алгоритм 2. ShiftAndLenFinding(S, p, α, β, P) (нахождение длины и позиции)

Вход: S — выборка, p — вероятность ошибки в qSC(p), α и β — доверительные вероятности ошибок 1 и 2 рода для (10), P — матрица из (1).

- 1: $i := 1, j := 1, m_s := -1.$
- 2: В рамках гипотезы $H_{i,j}$ построить матрицу $[P_2^{(i,j)}|I_{n-k}]$ и найти \widehat{p} (см. лемму 1).
- 3: Для кода $\mathcal{C}^{(i,j)}$ с порождающей матрицей $G(\mathcal{C}^{(i,j)}) = [P_2^{(i,j)}|I_{n-k}]$ вычислить $M = \max\{M_{\mathbf{h}}: \mathbf{h} \in B_{(\mathcal{C}^{(i,j)})^{\perp}}^0\}$ в соответствии с (10) для $p = \widehat{p}$.
- 4: **Если** |S| < 2M, **то** перехватить недостающее количество векторов.
- 5: Построить выборку $S^{(i,j)}$ вида (4).
- 6: Проверить гипотезу с помощью алгоритма CodeRecognition($\mathcal{C}^{(i,j)}, \mathcal{S}^{(i,j)}, \widehat{p}, \alpha, \beta$).
- 7: **Если** $m_s > 0$, **то** перейти на шаг 9.
- 8: **Если** гипотеза неверна, **то** i:=i+1 и возврат к шагу 2, **иначе** $m_s:=i$.
- 9: **Если** гипотеза верна, **то** j:=j+1 и возврат к шагу 2, **иначе** $m_l:=j-1$.

Выход: m_s, m_l — позиция и длина сообщения **m**.

вектора равна 1. На этапе нахождения начальной координаты гипотеза H_0 проверяется против альтернативы H_1 , так как при ошибочном выборе начальной координаты (и при предполагаемой единичной длине секретного подвектора) набор (4) представляет собой набор случайных и равновероятных векторов (при условии, что ключи $\mathbf{K}^{(t)}$ и векторы $\mathbf{m}_i^{(t)}, \, i \in \{1,2\},$ случайны и равновероятны, см. п. 1). Когда предполагаемая позиция вектора ${\bf m}$ найдена, начинается этап поиска длины путём постепенного увеличения, начиная с единицы. При этом если длина будет превышать истинную длину вектора **m**, то набор (4) уже будет представлять собой зашумлённые векторы некоторого кода, содержащего код $\mathcal{C}^{(i,j)}$. В частности, если $i=m_s$ и $j=m_l+1$ (то есть позиция вектора угадана верно, но предполагаемая длина на единицу больше, чем истинная), построенная выборка (4) будет представлять собой векторы линейного [n-k+j, n-k]-кода, порождённого базисом кода $\mathcal{C}^{(m_s,m_l+1)}$ и вектором ($\mathbf{0}^1 \parallel 1 \parallel \mathbf{0}^2$), где $\mathbf{0}^1$ и $\mathbf{0}^2$ — нулевые векторы длины m_l и n-k соответственно. Но так как вектор $\mathbf{m}_2^{(t)}$ случайный и равновероятный, каждый вектор в наборе (4) с вероятностью $1-1/q^2$ принадлежит смежному классу ($\mathbf{0}^1 \parallel 1 \parallel \mathbf{0}^2$) + $\mathcal{C}^{(m_s,m_l+1)}$ кода $\mathcal{C}^{(m_s,m_l+1)}$. При правильно найденных длине m_l и позиции m_s выборка $\mathbf{Z}_{\tau(m_s,m_l)}$ вида (3) представляет собой набор векторов вида

$$\widehat{\mathbf{z}}^{(t)} = (\mathbf{m} + \mathbf{K}^{(t)} P_2^{(m_s, m_l)} \parallel \mathbf{K}^{(t)}) + (\mathbf{e}_2^{(t)} \parallel \mathbf{e}_4^{(t)}), \quad t = 1, 2, \dots$$
(12)

Тогда задача восстановления сообщения **m** может быть решена, например, полным перебором по всевозможным значениям из $\mathbb{F}_q^{m_l}$ с помощью алгоритма CodeRecognition (если размер поля q и длина m_l сообщения позволяют произвести полный перебор за приемлемое время). Соответствующий алгоритм 3 построен ниже.

Так как $\widehat{p} \geqslant p$ (п. 1 леммы 1), для применения алгоритма ShiftAndLenFinding потребуется как минимум в 2 раза больше перехватов, чем для применения алгоритма SubvectorFinding. Таким образом, при нахождении содержания сообщения может быть использована выборка, построенная во время выполнения ShiftAndLenFinding. Для матрицы P (см. правило (1)) обозначим M(P) минимальное число векторов, достаточное для нахождения алгоритмами ShiftAndLenFinding и SubvectorFinding вектора \mathbf{m} .

Алгоритм 3. SubvectorFinding(S, p, α, β) (нахождение значения вектора)

Вход: $S = \{\mathbf{z}^{(t)}\}_{t=1,2,...}$ — выборка вида (3) при $i = m_s$ и $j = m_l$, p — вероятность ошибки в qSC(p), α и β — вероятности ошибок 1 и 2 рода для (10).

- 1: $\mathcal{M} := \emptyset$.
- 2: Для всех $\mathbf{y} \in \mathbb{F}_q^{m_l}$
- 3: по выборке $\mathcal S$ построить выборку $\widehat{\mathcal S} = \{\widehat{\mathbf z}^{(t)}\}_{t=1,2,\dots}$, где $\widehat{\mathbf z}^{(t)} = \mathbf z^{(t)} (\mathbf y \parallel \mathbf 0)$, $\mathbf 0$ нулевой вектор пространства $\mathbb F_q^{n-k}$;
- 4: проверить с помощью алгоритма CodeRecognition $(\mathcal{C}^{(m_s,m_l)},\widehat{\mathcal{S}},p,\alpha,\beta)$ гипотезу о том, что выборка $\widehat{\mathcal{S}}$ порождена кодовыми словами кода $\mathcal{C}^{(m_s,m_l)}$.
- 5: Если гипотеза верна, то $\mathcal{M} := \mathcal{M} \cup \{y\}$.

Выход: \mathcal{M} .

Замечание 2. Если $\mathbf{m} \neq \mathbf{y}$, но $(\mathbf{m} - \mathbf{y} \parallel \mathbf{0}) \in \mathcal{C}^{(m_s, m_l)}$, то алгоритм Subvector-Finding добавит вектор \mathbf{y} в множество кандидатов \mathcal{M} . Так как порождающая матрица $[n-k+m_l,n-k]$ -кода $\mathcal{C}^{(m_s,m_l)}$ имеет вид $G(\mathcal{C}^{(m_s,m_l)})=[P_2^{(m_s,m_l)}|I_{n-k}]$, то $(\mathbf{m} - \mathbf{y} \parallel \mathbf{0}) \in \mathcal{C}^{(m_s,m_l)}$ только в случае $\mathbf{m} = \mathbf{y}$. Поэтому существуют такие значения α и β , при которых алгоритм Subvector-Finding возвращает одноэлементное множество кандидатов.

Отметим, что нахождение сообщения **m** по выборке $\mathbf{Z}_{\tau(m_s,m_l)}$, состоящей из векторов вида (12), возможно и непереборным методом. Один из таких методов может быть построен для двоичного случая (q=2) на основе результатов работы [3].

Для примера рассмотрим [n, n-k]-код \mathcal{C} Рида — Соломона над полем $\mathbb{F}_q, q>2$. Пусть порождающая матрица кода \mathcal{C} имеет вид $G(\mathcal{C}) = [P|I_{n-k}]$. Заметим, что код \mathcal{C} это МДР-код, поэтому для любого $\omega \subset \{1, ..., k\}$ и $\tau = \omega \cup \{k+1, ..., n\}$ код $\pi_{\tau}(\mathcal{C})$ с порождающей матрицей $\pi_{\tau}(G(\mathcal{C})) = [\pi_{\omega}(P)|I_{n-k}]$ является МДР-кодом размерности n-k и длины $|\omega|+n-k$. Так как $\pi_{\tau}(G(\mathcal{C}))^{\perp}$ — также МДР-код, его кодовое расстояние равно n-k+1 (не зависит от ω и его мощности). Пусть в правиле (1) используется матрица P, являющаяся частью порождающей матрицы $G(\mathcal{C})$ рассматриваемого кода Рида — Соломона \mathcal{C} . Тогда построенная на шаге 2 алгоритма ShiftAndLenFinding матрица $\pi_{\tau(i,j)}(P) = [P_2^{(i,j)}|I_{n-k}]$ является матрицей МДР-кода $\pi_{\tau(i,j)}(\mathcal{C})$ размерности n-k+1 и по теореме 2 минимальный базис $B^0_{\pi_{\tau(i,j)}(\mathcal{C})^{\perp}},$ строящийся на первом шаге алгоритма CodeRecognition (к этому алгоритму обращение происходит на шаге 6 алгоритма определения позиции и длины постоянного подвектора), состоит из векторов веса n-k+1. Отметим, что базис $B^0_{\pi_{\tau(i,j)}(\mathcal{C})^\perp}$, например, может представлять собой строки матрицы $[I_i|(-P_2^{(i,j)})^{\top}]$ — порождающей матрицы кода $\pi_{\tau(i,j)}(\mathcal{C})^{\perp}$, где A^{\top} — транспонированная матрица А. Таким образом, размер выборки для определения позиции и длины сообщения, а также содержания сообщения определяется на основании длины ключа, используемого в правиле (1). Результаты вычислений минимального количества перехваченных векторов для нахождения подвектора т в зашумленных данных приведены в таблице для $q=16, n=15, \alpha=0.05, \beta=0.04.$

		, , , , ,		, 1	, ,			
	p							
n-k	≤ 0.0125	0,01875	0,025	0,03125	0,0375	0,04375	0,05	0,05625
1	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	213
3	2	2	2	2	2	5	519	2,0E+6
4	2	2	2	2	6	494	3,2E+5	$2,1\mathrm{E}{+}10$
5	2	2	2	3	194	60604	2,0E+8	$2,1\mathrm{E}{+}14$
6	2	2	2	37	7515	7,5E+6	1,3 E+11	$2,1\mathrm{E}{+}18$
7	2	2	4	570	293173	9,2E+8	7,9E+13	$2,1\mathrm{E}{+}22$
8	2	2	28	9083	1,1 E+7	$1,1\mathrm{E}{+}11$	$4,9E{+}16$	$2,1\mathrm{E}{+}26$
9	2	2	207	145186	4,5 E + 8	$1,4\mathrm{E}{+}13$	$3,1\mathrm{E}{+}19$	$2,1\mathrm{E}{+30}$
10	2	4	1585	2,3 E+6	$1,7\mathrm{E}{+}10$	$1,7\mathrm{E}{+}15$	1,9E+22	$2,1\mathrm{E}{+}34$
11	2	15	12205	$3,7\mathrm{E}{+7}$	$6,8\mathrm{E}{+}11$	$2,1\mathrm{E}{+}17$	1,2E+25	$2,1\mathrm{E}{+}38$
12	2	59	94107	5,9 E+8	$2,7\mathrm{E}{+}13$	$2,6\mathrm{E}{+}19$	7,5E+27	$2,1\mathrm{E}{+}42$
13	2	242	725943	9,5E+9	$1,0\mathrm{E}{+}15$	3,3E+21	$4,7\mathrm{E}{+30}$	$2,1\mathrm{E}{+}46$
14	2	1003	$5,\!6\mathrm{E}{+}6$	$1,5\mathrm{E}{+}11$	$4,1\mathrm{E}{+}16$	$4,0\mathrm{E}{+23}$	2,9E+33	$2,1\mathrm{E}{+50}$

Значение величны M(P) в случае, когда $[P|I_{n-k}]$ — порождающая матрица кода Рида — Соломона, $q=16,\ n=15,\ \alpha=0.05,\ \beta=0.04$

Теорема 3. Пусть q — степень простого числа; $q\mathrm{SC}(p)-q$ -ичный симметричный канал с вероятностью ошибки $p;\ n,k\in\mathbb{N},\ k< n;\ \alpha,\beta\in[0;1];\ P$ и \widetilde{P} — разные $((n-k)\times k)$ -матрицы, причём матрица $[P|I_{n-k}]$ является порождающей матрицей МДР-кода. Тогда $M(P)\geqslant M(\widetilde{P}).$

Доказательство. Ранее показано, что для МДР-кода минимальный базис дуального кода состоит из векторов веса n-k+1. Заметим, что для не-МДР-кода минимальный базис дуального кода состоит из векторов веса, не превышающего n-k+1. На основании теоремы 2 получаем доказываемое утверждение.

Таким образом, при заданных q, p, n, k, α и β лучшую стойкость метода кодового зашумления к атаке нахождения фиксированного вектора обеспечивают такие $((n-k)\times k)$ -матрицы P, для которых матрица $[P|I_{n-k}]$ порождает МДР-код, так как в этом случае потребуется наибольшее количество перехватов для нахождения сообщения.

ЛИТЕРАТУРА

- 1. Wyner A. D. The wire-tap channel // Bell Sys. Tech. J. 1975. V. 54. P. 1355–1387.
- 2. *Корэсик В. И.*, *Яковлев В. А.* Неасимптотические оценки эффективности кодового зашумления одного канала // Пробл. передачи информ. 1981. Т. 17. № 4 С. 11–18.
- 3. *Иванов В. А.* Статистические методы оценки эффективности кодового зашумления // Труды по дискретной математике. Т. 6. М.: Физматлит, 2002. С. 48–63.
- 4. *Косолапов Ю. В., Турченко О. Ю.* Поиск информационного сообщения в зашумлённых кодовых блоках при многократной передаче данных // Прикладная дискретная математика. Приложение. 2016. № 9. С. 55–57.
- 5. Weidmann C. Coding for the q-ary symmetric channel with moderate q // IEEE Int. Symp. Inform. Theory. 2008. P. 2156–2159.
- 6. Couvreur A. Distinguisher-based attacks on public-key cryptosystems using Reed Solomon codes // Designs, Codes and Cryptography. 2014. V. 73. No. 2. P. 641–666.
- 7. Сидельников В. М. Теория кодирования. М.: Физматлит, 2008. 324 с.
- 8. Chabot C. Recognition of a code in a noisy environment // Proc. IEEE ISIT. June 2007. P. 2211–2215.

- 9. Yardi A. D. and Vijayakumaran S. Detecting linear block codes in noise using the GLRT // Proc. IEEE Intern. Conf. Communications, Budapest, Hungary, June 9–13, 2013. P. 4895–4899.
- 10. Ширяев А. Н. Вероятность. В 2-х кн. 3-е изд., перераб. и доп. М.: МЦНМО, 2004. Кн. $1-520\,\mathrm{c}$., кн. $2-408\,\mathrm{c}$.

REFERENCES

- 1. Wyner A. D. The wire-tap channel. Bell Sys. Tech. J., 1975, vol. 54, pp. 1355–1387.
- 2. Korzhik V. I. and Yakovlev V. A. Neasimptoticheskie otsenki effektivnosti kodovogo zashumleniya odnogo kanala [Nonasymptotic estimates for efficiency of code jamming in a wire-tap channel]. Probl. Peredachi Inf., 1981, vol. 17, iss. 4, pp. 11–18. (in Russian)
- 3. Ivanov V. A. Statisticheskie metody otsenki effektivnosti kodovogo zashumleniya [Statistical estimation of the code noising efficiency]. Tr. Diskr. Mat., 2002, vol. 6, pp. 48–63. (in Russian)
- 4. Kosolapov Y. V. and Turchenko O. Y. Poisk informatsionnogo soobshcheniya v zashumlennykh kodovykh blokakh pri mnogokratnoy peredache dannykh [Search of an information message in noisy code blocks at repeated data transmission]. Prikladnaya Diskretnaya Matematika. Prilozhenie, 2016, no. 9, pp. 55–57. (in Russian)
- 5. Weidmann C. Coding for the q-ary symmetric channel with moderate q. IEEE Int. Symp. Inform. Theory, 2008, pp. 2156–2159.
- 6. Couvreur A. Distinguisher-based attacks on public-key cryptosystems using Reed Solomon codes. Designs, Codes and Cryptography, 2014, vol. 73, no. 2, pp. 641–666.
- 7. Sidel'nikov V. M. Teoriya Kodirovaniya [Coding Theory]. Moscow, Fizmatlit Publ., 2008, 324 p. (in Russian)
- 8. Chabot C. Recognition of a code in a noisy environment. Proc. IEEE ISIT, June 2007, pp. 2211–2215.
- 9. Yardi A. D. and Vijayakumaran S. Detecting linear block codes in noise using the GLRT. Proc. IEEE Intern. Conf. Communications, Budapest, Hungary, June 9–13, 2013, pp. 4895–4899.
- 10. Shiryaev A. N. Veroyatnost' [Probability]. Moscow, MCCME Publ., 2004. (in Russian)