T. 58, № 1

ФИЗИКА

2015

ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

УДК 539.219.3

Г.М. ПОЛЕТАЕВ**, А.И. ПОТЕКАЕВ*,****, М.Д. СТАРОСТЕНКОВ**, А.А. СОСКОВ**, А.А. КЛОПОТОВ****,****, В.В. КУЛАГИНА***,****, Л.С. ГРИНКЕВИЧ*

ЭНЕРГИЯ ОБРАЗОВАНИЯ И МИГРАЦИИ ТОЧЕЧНЫХ ДЕФЕКТОВ В УПОРЯДОЧЕННЫХ СПЛАВАХ СиРt И CuPt₃ ¹

С помощью метода молекулярной динамики получены значения энергии образования и миграции вакансий и межузельных атомов в упорядоченных сплавах CuPt и CuPt₃. Определены энергетически выгодные конфигурации межузельных атомов. В CuPt обнаружена высокая анизотропия диффузии при миграции межузельного атома: межузельный атом в упорядоченном сплаве CuPt мигрирует, как правило, вдоль плоскостей (111), содержащих атомы Cu.

Ключевые слова: упорядоченный сплав, точечный дефект, диффузия, энергия образования, энергия миграции.

Введение

Упорядочивающиеся сплавы и интерметаллиды имеют большие перспективы практического применения в связи с наличием у них широкого спектра уникальных физических и физикомеханических свойств [1, 2]. Стабильность электрических, термоэлектрических и механических свойств платины и ее сплавов, а также высокая коррозионная и термическая стойкость сделали этот металл незаменимым для современной электротехники, автоматики и телемеханики, радиотехники, точного приборостроения [1–3]. Естественно, что знание структурно-энергетических характеристик дефектов позволяет прогнозировать свойства и поведение материала в тех или иных условиях, конструировать новые конденсированные системы с заданным набором свойств. В настоящее время из-за большого разнообразия дефектов в упорядоченных структурах вопрос нахождения структурно-энергетических характеристик дефектов остается актуальным. Для их определения в настоящее время эффективно используются как экспериментальные методы, так и методы компьютерного моделирования.

Цель настоящей работы состоит в определении с помощью метода молекулярной динамики энергетических характеристик точечных дефектов в упорядоченных сплавах CuPt и CuPt₃, имеющих сверхструктуры $L1_1$ и $L1_3$. Для этого определим значения энергий образования и активации миграции вакансий и межузельных атомов в рассматриваемых сплавах, а также исследуем особенности их миграции.

Описание компьютерной модели

Система Cu–Pt является единственной двойной системой, в которой при соответствующем стехиометрическом составе реализуются упорядоченные фазы CuPt со сверхструктурой $L1_1$ (рис. 1, *a*) и CuPt₃ со сверхструктурой LI_3 (рис. 1, *б*) [1]. Обе фазы стабильны до относительно высоких температур (около 1080 и 950 К соответственно) [1, 3].

Рис. 1. Элементарная ячейка сверхструктур $L1_1(a)$ и $L1_3(b)$ [2]

¹ Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов № 13-02-00301_а, 14-02-98000-р_сибирь_а, 14-08-90416-Укр_а.

Точечные дефекты (вакансии и межузельные атомы) играют важную роль в процессах, связанных, например, с диффузией, деформацией, радиационным повреждением, подвижностью дислокаций [1, 2].

Упорядоченные сплавы CuPt и CuPt₃ рассматривались в модели со структурой, соответствующей ГЦК-решетке, хотя известно [1], что по сравнению с идеальной ГЦК-решеткой данные сплавы имеют небольшие ромбоэдрические искажения. По этой причине после создания расчетных блоков в модели проводилась обязательная структурная релаксация, в ходе которой происходила небольшая деформация решетки. В завершение релаксации система «охлаждалась» до 0 К. Расчетный блок содержал 8400 атомов, так как для исследования свойств точечных дефектов этого количества вполне достаточно [1, 4]. На границы блока были наложены периодические граничные условия (имитирующие бесконечное повторение блока в пространстве). Для описания межатомных взаимодействий использовались потенциалы Морзе, которые были апробированы при моделировании методом Монте-Карло фазового перехода порядок – беспорядок в системе Cu–Pt [3–8].

Во всех случаях в расчетном блоке рассматривался единственный точечный дефект (вакансия или межузельный атом). Вакансия вводилась путем удаления атома Cu или Pt, а межузельный атом – путем добавления одного атома Cu или Pt в различные позиции решетки: с образованием гантельной конфигурации в различных направлениях, в октаэдрическую или тетраэдрическую поры.

Для определения энергии миграции точечных дефектов проводилось моделирование диффузии при различных температурах. Шаг интегрирования по времени движения атомов в методе молекулярной динамики был равен 5 фс (5·10⁻¹⁵ с). Температура расчетного блока задавалась через начальные скорости атомов в соответствии с распределением Максвелла. При этом суммарный импульс и момент импульса атомов в расчетном блоке был равен нулю.

Энергии образования и миграции точечных дефектов определялись следующим образом. Энергию образования вакансии *E*_{vf} можно представить как

$$E_{\nu f} = E_{\nu 0} - \zeta \,, \tag{1}$$

где $E_{\nu 0}$ – работа, которую нужно затратить на удаление одного атома из объема кристалла на бесконечность с учетом релаксации структуры вблизи вакансии; ζ – минимальная работа, которую нужно совершить при удалении на бесконечность одного атома с идеальной поверхности при T = 0 К. Отметим, что в [9, 10] подчеркивается следующая особенность. Величину ζ нельзя представлять как энергию сублимации E_s , считая, что при добавлении атома на поверхность восстанавливается половина атомных связей.

Определим энергию образования межузельного атома *E*_{if} как

$$E_{if} = E_{i0} + \zeta \,, \tag{2}$$

где E_{i0} – работа, совершаемая при перемещении атома из бесконечности в соответствующее междоузлие (с учетом релаксации структуры вблизи дефекта).

Определение величины ζ в моделировании является непростой задачей, подразумевающей все особенности взаимодействия атомов на поверхности или изломе моноатомной ступени. Для определения величины ζ был использован «косвенный метод» [9], заключающийся в вычислении ζ через справочные значения энергии сублимации E_S , энергии образования вакансии E_{vf} и энергии, высвобождаемой при релаксации структуры вблизи вакансии E_{vr} (которую можно найти, например, в молекулярно-динамической модели):

$$S = 2E_S - E_{vf} - E_{vr}$$
 (3)

В связи с отсутствием экспериментальных данных об энергиях образования вакансии в упорядоченных сплавах CuPt и CuPt₃ их значения задавали, опираясь на известные справочные значения энергии образования вакансии в Cu и Pt, энергии сублимации в Cu, Pt, CuPt, CuPt₃ и величин E_{vv} , найденных в молекулярно-динамической модели. В табл. 1 соответствующие задаваемые значения отмечены знаком «~». В этой же таблице приведены значения энергии образования межузельных атомов в CuPt и CuPt₃.

Отметим и такой факт. Несмотря на то, что межузельные атомы изначально вводились в различные позиции в кристаллической решетке (с образованием гантельной конфигурации в различных направлениях, в октаэдрическую или тетраэдрическую поры) в упорядоченных сплавах CuPt и CuPt₃, они, как правило, стремились образовать единственную для каждого случая энергетически выгодную конфигурацию. При введении лишнего атома Cu в любую позицию в CuPt он переходил в краудионную конфигурацию (т.е. располагался вдоль плотноупакованного ряда <110>) в плоскости (111), содержащей атомы меди (рис. 2, *a*). Так как краудионный механизм миграции межузельного атома имеет наименьшую энергию активации [9], то следует ожидать высокой подвижности межузельного атома в CuPt.

Металл или сплав	Местоположение дефекта	<i>Еs</i> , эВ	<i>Е</i> ₀ , эВ	ζ, эВ	<i>Е</i> _{<i>f</i>} , эВ			
Cu		3.54	7.24	6.02	1.22 [10, 11]			
Pt		5.85	11.82	10.44	1.38 [10, 11]			
Вакансия								
CuPt	Cu	5.77	10.58	9.38	~ 1.2			
	Pt		12.10	10.70	~ 1.4			
CuPt ₃	Cu	5.58	10.37	9.07	~ 1.3			
	Pt		11.34	9.94	~ 1.4			
Межузельный атом								
CuPt	Cu – краудион <110> в плоскости Cu (111)	5.77	-5.55	9.38	3.8			
	Pt – гантель <111> перпендикулярно плоскости Pt (111)		-8.37	10.70	2.3			
CuPt ₃	Cu – гантель <100>	5.58	-2.97	9.07	6.1			
	Pt – нестабильная конфигурация, пере- страивается в гантель Cu <100>			9.94	_			

Энергия образования вакансии и меж	хуельного ятомя в СиРt и СиРt ₂

Таблица 1

При введении лишнего атома Pt в упорядоченный сплав CuPt формируется гантель из двух атомов Pt в направлении <111> перпендикулярно плоскости (111), содержащей атомы Pt, между двумя плоскостями Cu (111) (рис. 2, δ). Энергия образования данной конфигурации оказывается ниже, чем предыдущей конфигурации межузельного атома Cu (табл. 1).

Рис. 2. Межузельные атомы: a – Cu в упорядоченном сплаве CuPt; δ – Pt в CuPt; e – в CuPt₃. Атомы Cu – черные меньшего диаметра, Pt – светлые большего диаметра

Во всех случаях введения в упорядоченный сплав CuPt₃ атома Cu или Pt формировалась гантель из двух атомов Cu вдоль направления <100> (рис. 2, *в*). Положение атома Pt в междоузлии было нестабильным, так как атом Pt стремился вытеснить атом Cu из узла с образованием указанной конфигурации.

Следует заметить, что в чистых ГЦК-металлах межузельный атом, как правило, образует гантель из двух атомов в узле, ориентированную вдоль направления <100> [9, 12].

Энергия и особенности миграции точечных дефектов в CuPt и CuPt₃

Для вычисления энергии миграции точечного дефекта определялась зависимость коэффициента диффузии от температуры D = D(T) при введении в расчетный блок одного дефекта. Энергию миграции дефекта E_m можно найти с помощью зависимости $f = \ln D(T^{-1})$, предварительно определив по графику тангенс угла наклона tga прямой к оси абсцисс [9]:

$$E_m = -k \cdot \operatorname{tg} \alpha = -k \frac{\partial \ln D}{\partial (T^{-1})},\tag{4}$$

где k – постоянная Больцмана. С помощью полученных зависимостей $f = \ln D(T^{-1})$ можно также определить предэкспоненциальный множитель D_0 в соответствующем уравнении Аррениуса.

Для нахождения коэффициентов диффузии проводились компьютерные эксперименты продолжительностью 300–500 пс. Коэффициент диффузии рассчитывался как

$$D = \frac{1}{6tN} \sum_{i=1}^{N} \left(\left(x_{0i} - x_i \right)^2 + \left(y_{0i} - y_i \right)^2 + \left(z_{0i} - z_i \right)^2 \right),$$
(5)

где x_{0i} , y_{0i} , z_{0i} – координаты начального положения *i*-го атома; x_i , y_i , z_i – координаты *i*-го атома в момент времени *t*; N – число атомов в расчетном блоке. Для исключения атомных смещений, обусловленных тепловыми колебаниями атомов, система в конце компьютерного эксперимента охлаждалась до температуры близкой к 0 К. Полученные значения энергии миграции и соответствующие предэкспоненциальные множители приведены в табл. 2.

Таблица 2 Параметры диффузии при миграции вакансии и межузельного атома в CuPt и CuPt₃

Сплав	Мигрирующий	Вакансия		Межузельный атом	
	атом	<i>Е</i> _{<i>m</i>} , эВ	<i>D</i> ₀ , м ² /с	<i>Е</i> _{<i>m</i>} , эВ	<i>D</i> ₀ , м ² /с
CuPt	Cu	0.89	5.8·10 ⁻⁷	0.06	$7.0 \cdot 10^{-8}$
	Pt	1.05	$5.0 \cdot 10^{-7}$	0.21	$5.7 \cdot 10^{-10}$
	Среднее (Си и Рt)	0.96	$5.7 \cdot 10^{-7}$	0.06	$3.4 \cdot 10^{-8}$
CuPt ₃	Cu	1.21	$3.1 \cdot 10^{-7}$	0.29	$1.4 \cdot 10^{-8}$
	Pt	1.00	$1.6 \cdot 10^{-7}$	0.37	$3.5 \cdot 10^{-9}$
	Среднее (Си и Рt)	1.01	$1.6 \cdot 10^{-7}$	0.34	8.6.10-9

Миграция вакансии в сплаве CuPt протекает интенсивнее, чем в сплаве CuPt₃. Коэффициент диффузии в CuPt при той же температуре, как правило, выше в несколько раз по сравнению с соотвествующей характеристикой в CuPt₃. Усредненная энергия миграции (т.е. миграции атомов обоих сортов) для CuPt ниже, чем для CuPt₃ (табл. 2). При рассмотрении интенсивности миграции атомов разного сорта выяснено, что в случае вакансионного механизма в CuPt интенсивнее мигрируют атомы Cu, а в CuPt₃ – атомы Pt. Более высокая подвижность относительно тяжелых атомов наблюдалась, например, в интерметаллиде Ni₃Al [1], в котором происходила более интенсивная миграция атомов Ni по сравнению с атомами Al. В случае сплава CuPt₃ более высокую подвижность атомов Pt можно объяснить тем, что энергия связей Pt–Pt и Pt–Cu выше по сравнению с энергией связи Cu–Cu и энергетически не выгодно при скачке вакансии создавать новую связь Cu– Cu (которых в сплаве CuPt₃ меньше, чем связей Pt–Pt и Pt–Cu).

Межузельный атом в CuPt имел высокую подвижность, так как энергия его миграции равна всего 0.06 эВ. При этом наблюдалась ярко выраженная анизотропия диффузии: межузельный атом мигрировал преимущественно в одной плоскости Cu (111) (рис. 3, *a*). Такой характер диффузии не менялся при введении изначально лишнего атома Pt: атом Pt в процессе миграции, как правило, вытеснял один из атомов Cu в «медной» плоскости и в дальнейшем уже мигрировали, в основном, атомы Cu. В связи с этим механизм и скорость миграции межузельного атома в сплаве CuPt отличны от таковых в чистых металлах.

Межузельный атом в CuPt₃ оказался менее подвижным, чем в чистых ГЦК-металлах (энергия миграции межузельного атома в Cu, например, равна 0.1 эВ [9]). Анизотропия диффузии в данном случае не наблюдалась (рис. 3, δ).

Рис. 3. Смещения атомов в результате миграции межузельного атома: a - в CuPt при температуре 700 К в течение 150 пс; $\delta - в$ CuPt₃ при температуре 1500 К в течение 300 пс. Атомы Cu – черные меньшего диаметра, Pt – светлые большего диаметра

Заключение

С помощью метода молекулярной динамики получены значения энергии образования и миграции точечных дефектов в упорядоченных сплавах CuPt и CuPt₃. Выяснено, что в обоих сплавах вакансии с относительно большей вероятностью образуются в подрешетке Cu, а межузельные атомы формируют конфигурации, нехарактерные для чистых металлов: в CuPt избыточный атом Cu стремится сформировать краудион вдоль направления <110> в плоскости (111), содержащей атомы меди; при введении атома Pt формируется гантельная конфигурация из двух атомов Pt вдоль направления <111> перпендикулярно плоскости (111), содержащей атомы Pt; при введении в упорядоченный сплав CuPt₃ атома Cu или Pt во всех случаях формировалась гантель из двух атомов Cu вдоль направления <100>.

При миграции вакансии в сплаве CuPt мигрируют, в основном, атомы Cu, а в сплаве CuPt₃, напротив, атомы Pt. Показано, что интенсивность диффузии в сплаве CuPt выше, чем в сплаве CuPt₃ как в случае миграции вакансии, так и при миграции межузельного атома. При миграции межузельных атомов в обоих сплавах преимущественно мигрируют атомы Cu, причем в CuPt межузельные атомы имеют сравнительно высокую подвижность. Кроме того, в сплаве CuPt наблюдается высокая анизотропия диффузии при миграции межузельного атома: межузельный атом мигрирует, как правило, вдоль плоскостей (111), содержащих атомы Cu.

Анизотропия миграции межузельных атомов в упорядоченном сплаве CuPt может использоваться для создания, например, фильтров, радиационно-стойких материалов и т.д. При этом нарушение дальнего порядка и деформация, очевидно, будут иметь влияние на анизотропию диффузии в CuPt.

СПИСОК ЛИТЕРАТУРЫ

- 1. Потекаев А.И., Старостенков М.Д., Кулагина В.В. Влияние точечных и планарных дефектов на структурно-фазовые превращения в предпереходной слабоустойчивой области металлических систем. Томск: Изд-во НТЛ, 2014. 488 с.
- 2. Старенченко В.А., Старенченко С.В., Колупаева С.Н., Пантюхова О.Д. // Изв. вузов. Физика. – 2000. – Т. 43. – № 1. – С. 66–70.
- 3. Потекаев А.И., Старостенков М.Д., Кулагина В.В. и др. // Изв. вузов. Физика. 2012. Т. 55. № 7. С. 78–87.
- 4. Старостенков М.Д., Чаплыгина А.А., Потекаев А.И. и др. // Фундаментальные проблемы современного материаловедения. – 2012. – № 3. – С. 367–374.
- 5. Старостенков М.Д., Чаплыгина А.А., Потекаев А.И. и др. // Фундаментальные проблемы современного материаловедения. – 2011. – № 4. – С. 117–124.
- 6. Старостенков М.Д., Чаплыгина А.А., Потекаев А.И. и др. // Фундаментальные проблемы современного материаловедения. – 2012. – № 4. – С. 503–509.
- Потекаев А.И., Старостенков М.Д., Кулагина В.В. и др. // Изв. вузов. Физика. 2012. – Т. 55. – № 5. – С. 7–16.

- 8. Потекаев А.И., Старостенков М.Д., Кулагина В.В. и др. // Изв. вузов. Физика. – 2013. – T. 56. – № 6. – C. 14–22.
- Полетаев Г. М., Старостенков М.Д. // ФТТ. 2010. Т. 52. № 6. С. 1075–1082.
 Штремель М.А. Прочность сплавов. Ч 1. Дефекты решетки. М.: Металлургия, 1982. 280 с.
- 11. Волленбергер Г. Й. // Физическое металловедение. Т. 3. Физико-механические свойства металлов и сплавов / под ред. Р. Кана. – М.: Мир, 1987. – С. 5–74.
- 12. Zhao P. and Shimomura Y. // Comput. Mater. Sci. 1999. No. 14. P. 84-90.
 - *Национальный исследовательский Томский государственный университет, Поступила в редакцию 21.08.14. г. Томск, Россия
 - **Алтайский государственный технический университет им. И.И. Ползунова,
 - г. Барнаул, Россия
 - ***Сибирский государственный медицинский университет,
 - г. Томск, Россия
 - ****Сибирский физико-технический институт им. В.Д. Кузнецова
 - Томского государственного университета, г. Томск, Россия
 - *****Томский государственный архитектурно-строительный университет,
 - г. Томск, Россия
 - E-mail: gmpoletaev@mail.ru; kanc@spti.tsu.ru; genphys@mail.ru

- Потекаев Александр Иванович, д.ф.-м.н., профессор, директор СФТИ ТГУ;
- Старостенков Михаил Дмитриевич, д.ф.-м.н., профессор, зав. кафедрой;
- Сосков Антон Анатольевич, аспирант;

Кулагина Валентина Васильевна, к.ф.-м.н., доцент;

Полетаев Геннадий Михайлович, д.ф.-м.н., профессор, зав. кафедрой;

Клопотов Анатолий Анатольевич, д.ф.-м.н., профессор, профессор;

Гринкевич Лариса Сергеевна, д.э.н., профессор, директор ВШБ ТГУ.