
978-1-4673-7776-8/15/$31.00 ©2015 IEEE

FSMTest-1.0: a manual for researches

N.Shabaldina, M.Gromov
National Research Tomsk State University

NataliaMailBox@mail.ru, gromov@sibmail.com

Abstract

In this paper we describe software tool «FSMTest-
1.0» that was developed by group of authors from the
department of Computer science of Tomsk State
University. The tool contains implementations of well-
known and original test suites generation methods for
different models with finite numbers of transitions. The
main contribution of our tool is that it derives test
suites with the guaranteed fault coverage.

1. Introduction

It is well known that testing is an important stage
within the software and hardware development cycle.
The main weak place of most testing tools is relying on
heuristics, so such tools can’t guarantee fault coverage.
However, if the system under test is discrete and can be
described by the model with finite number of
transitions, then we can pretend to derive finite test
suites with guaranteed fault covering (w.r.t. the fault
model). Our scientific group under the leadership of
N.Yevtushenko works in the area of developing
methods for generating exhaustive test suites for FSM
(Finite State Machine) model, theirs modifications and
compositions. The purpose of our investigation is to
evaluate proposing methods. In order to do this we
create the tool «FSMTest-1.0». In this work we
describe our tool and the underlying methods and
observe possible applications for researching and
educational needs.

2. Related works

Most works related to our work are, of course,
different tools for testing. The first tool we would like
to mention is TorX [1] and its more recent
implementation in Java jTorX [2]. This tool is very
close to our tool. TorX uses a Labelled Transition
System [3] as underlying model and strong theory for
test generation [3]. It even can run test on a system
under test whenever a tester provides an adaptor to

connect TorX to the SUT, what is not available in our
tool. But unfortunately TorX does not have notion of
fault model and therefore can guarantee test to be
exhaustive only for infinite test. Whenever test is finite
(and of course it is every case one uses this tool)
nothing about fault coverage is guaranteed. This issue
can be overcome for some extent with notion of test
purposes [4], but then one needs specify separate test
purpose for each fault, which is not a simple job.

Next tool is UniTESK [5]. It is group of tools for
different languages and even systems (e.g. MicroTESK
[6] is specially designed to test processors) which can
not only generate tests but also execute them. All these
sub-tools share same concepts: boundary analysis, flow
graph coverage and test purposes. Tests provided by
UniTESK tools are exhaustive according to the
mentioned concepts, but might not be enough when
testing real systems.

Among commercial tools we would like to note
bunch of tools provided by the company called
Conformiq [7]. It is quit user friendly good looking set
of tools, providing not only testing facilities, but
accompanying functionality as well. Underlying model
which is used in these tools is UML state-charts.
Mechanisms for test derivation are: boundary analysis,
state chart coverage and requirements (test purposes).
And again, generated test are exhaustive according to
these approaches but might not be enough to find an
error.

Of course this list far from being complete but the
main weak place of most testing tools is relying on
heuristics (most popular — boundary analysis and
different coverages) rather than fault model. Such
heuristics specify just some points where fault can be,
and fault model specifies a whole class of faults. Our
tool includes test suite generation methods for different
models with finite number of transitions and so we
derive exhaustive test suites for conformance and
interoperability testing.

3. Preliminaries

216 IEEE EWDTS, Batumi, Georgia, September 26-29, 2015

In this paper we just mention some notions in a very
informal manner.

We are meaning under models with finite numbers
of transitions well-known Finite State Machine (FSM)
model [8] and the modifications of this model. We
refresh that FSM is discrete model with the memory
(finite number of states) and it produces output
sequence in response to the given input sequence. If an
FSM produces not more than one output sequence to
the given input sequence, then FSM is called
deterministic. Otherwise, FSM is called
nondeterministic. Nondeterministic FSM is said to be
observable if we always can determine the current state
of FSM by knowing the initial state, input sequence
and observed output sequence.

Timed FSM in this work is FSM with time delays.
In this model in addition to the ordinary transitions
under inputs there are transitions under time-outs when
no input is applying [9, 10].

Testing as a process can be rather different.
An active testing is such a process when we apply

input sequences, observe output sequences and make a
conclusions based on our specification or on the
criteria of the faulty-free system. Passive testing is
such a process when we just can observe sequences (no
applying at all).

An active experiment (or testing process) is
preset if input sequences are known before
starting the experiment. An active experiment is
adaptive if at each step of the experiment the next
input is selected based on previously observed
outputs.

In order to derive a test suite with the guaranteed
fault coverage we need a fault model.

In conformance testing a traditional fault model is a
triple <A, ∼ , ℜ>, where A is a specification FSM, ∼ is
a conformance relation, fault domain ℜ is the set of all
possible (faulty and non-faulty) implementation FSMs
with the same input and output alphabets as the
specification FSM.

A test case is a finite input sequence of the
specification FSM. As usual, a test suite is a finite set
of test cases. We say that an implementation FSM
passes the test case if an output response is in the set of
output responses of the specification FSM. Otherwise,
the implementation FSM fails the test case. Given a
test suite, an implementation passes the test suite if it
passes each test case. If each faulty FSM from the fault
domain fails the test suite, then test suite is said to be
complete. If each faulty-free FSM from the fault
domain passes the test suite, then test suite is said to be
sound. If test suite is complete and sound then it is said
to be exhaustive.

In interoperability testing [11] the first aim is to
assure that two or more implementations can work

together without falling into deadlock or livelock
(infinite internal or external dialog). In this case the
fault model is a pair <ℜ, DEC> where ℜ is the set of
all possible implementation systems while DEC is the
criterion of a faulty-free system. And in addition to
check livelocks there is also a task of testing in context.

4. FSMTest-1.0: modules for single FSMs

4.1. Test suite generation for deterministic
FSMs

Deterministic finite state machine model is a
classical model and the only conformance relation that
can be checked in black-box testing is a so-called
equivalence relation. Two FSMs are called equivalent
if they have the same behavior, i.e. for a given input
sequence they produce the same output sequence.
Since 1973 [12] it is known how to derive an
exhaustive test suites w.r.t. the fault model
<A, ≅ , ℜm>, where A is a specification FSM, ≅ is an
equivalence relation, fault domain ℜ is the set of all
possible (faulty and non-faulty) FSM implementations
with the same input and output alphabets as the
specification FSM and the number of state that is not
more than known fixed integer number.

Our tool (Figure 1) allows to derive the exhaustive
test suites for the deterministic FSMs using the
following methods: W [12], Wp, Hsi and H [8]. The
input FSM (the specification) should be reduced,
connected and deterministic. And the user can set the
upper-bound m that is the number of states in FSM
implementations. By setting m the user set the fault
domain.

4.2. Test suite generation for nondeterministic
FSMs

As we already mentioned, two FSMs are equivalent
if they have the same input/output behavior. For
nondeterministic FSMs we have more relations that
can be checked by black-box testing.

An FSM T is a reduction of FSM S (T ≤ S) if the
input/output behavior of T is a subset of that of S [12].

When deriving test suites with respect to the
reduction and equivalence relations with the
guaranteed fault coverage the so-called «all weather
conditions» assumption is assumed to be satisfied (in
the case of testing a nondeterministic implementation).
In the case when this assumption cannot be satisfied
the only relation that can be used for the preset test
derivation with the guaranteed fault coverage is the
separability relation. FSMs T and S are separable if
there is an input sequence, called a separating

IEEE EWDTS, Batumi, Georgia, September 26-29, 2015 217

sequence, such that the sets of output responses of
these FSMs to the sequence do not intersect, i.e., the
sets are disjoint. If such a sequence does not exist then
FSMs T and S are non-separable (T ≁ S) [12].

Using our tool you can derive exhaustive test suites
for the nondeterministic observable FSMs w.r.t. the
reduction [13] and to the non-separability relation [12].

Figure 1. Screen of deriving an exhaustive test suites for
deterministic FSMs

4.3. Test suite generation for timed FSMs

Our tool allows to derive test suites for
deterministic timed FSMs and for observable
nondeterministic timed FSMs.

There are two ways for deriving test suites for
deterministic timed FSMs in our tool:

1) Test suite for the timed FSM is derived by
conversion to classical FSM and then using one of the
methods (W, Hsi or H) for test suite derivation [9].

2) Test suite for the timed FSM is derived directly
(without conversion to a classical FSM). In this case
the fault domain is determined by explicitly
enumerating of deterministic FSM implementations.
Such a test suite consists of timed input sequences
[10]. Each sequence is a distinguishing sequence for
the specification and one of the FSMs from the given
fault domain (i.e. a sequence for which the output
sequences of these machines are different).

For nondeterministic observable timed FSMs we
consider r-distinguishability relation. Two complete
(timed) machines can be distinguished by an
adaptive experiment if they are r-distinguishable,
i.e., if they have no common complete reduction.
For the compact representation of the adaptive
experiment we can use so-called r-distinguishing
machine [10]. Using our tool you can derive an

adaptive test suite for observable timed specification
FSM and the fault domain that is determined by
explicitly enumerating of observable timed FSM
implementations.

4.4. FSM generator

In order to conduct an experiments we add into the
tool an FSM generator that can generate one or more
FSMs of specified type (classical or timed,
deterministic or nondeterministic). If we generate
deterministic FSM then we can choose an option
«reduced». If we generate nondeterministic FSM then
we can choose an option «observable».

In any case generated FSM will be connected, it
means it will not have an isolation states.

In addition to FSM type you need to specify FSM’s
size: the number of inputs, outputs, states.

5. FSMTest-1.0: modules for FSM
compositions

As we’ve mentioned in the introduction,
conformance testing is just the first stage of testing.
Then we have a stage of interoperability testing. In this
stage we are dealing with the communicating systems.
And if the work of each system can be described as a
finite state machine, then in interoperability testing we
are dealing with the composition of FSMs.

We assume, that a system at hand has at most one
message to transit, it means that the next external input
is submitted to the system only after it has produced an
external output to the previous input. And a component
machine accepting an input may produce either an
internal or an external output. So we consider only
binary parallel composition.

5.1. Test suite derivation for live-lock checking

A general fault model for interoperability testing is
the pair <ℜ, DEC>, where the fault domain ℜ is the set
of all possible implementation systems while DEC is
the criterion of a faulty-free system [11]. For first
phase of interoperability testing we define the fault
model <ℜ, livelock- and deadlock-free>, where ℜ is
the set of compositions of all possible component
implementations. We say that a test suite is complete
w.r.t. the fault model <ℜ, livelock- and deadlock-free>
if the test suite detects each implementation system
with livelocks and/or deadlocks, the method is
described in [11].

218 IEEE EWDTS, Batumi, Georgia, September 26-29, 2015

5.2. Deriving forbidden invariants for live-lock
passive testing

Our tool allows to derive the set of forbidden
invariants (input-output sequences that indicates the
possibility of livelocks/deadlocks in the system) based
on the partial specification of one of the components of
the FSM composition. This set of forbidden invariants
we can use for the live-lock passive testing.

5.3. Test derivation for component FSMs

Sometimes we haven’t a possibility to test an
implementation in isolation and we need in this case to
test a whole system on the hypothesis that one of the
communicating systems is working correct. In our tool
one of the components is assumed to be faulty and the
conformance relation between specification
composition and system under testing is an
equivalence relation. The test suite is derived using H-
method.

5.4. Generator of component machines for the
composition of two FSMs

In order to conduct an experiments we also add into
the tool an FSM generator of component machines for
the binary parallel composition of two FSMs. Created
generator allows to generate partial or complete
deterministic FSMs that are describe the behavior of
the component machines.

6. Conclusions and acknowledges

In this paper we describe software tool «FSMTest-
1.0» that was developed by group of authors from the
department of Computer science of Tomsk State
University. This tool have been developed for the
researching and education use and allows to derive test
suites with guaranteed fault coverage. Our University
have got the certificate of registration of the tool. The
practice value of our investigation is the created tool
that is used in the current researches and the
educational process in such courses as «Model based
testing», «Automata theory» at our department.

This work was supported by the basic part of the
State Assignment of the Ministry of Education and
Science of the Russian Federation (Project code No.
1975).

7. References

[1] G.J. Tretmans, and H. Brinksma, “TorX: Automated
Model-Based Testing”, In First European Conference on

Model-Driven Software Engineering, Germany, 2003, pp.
31-43.

[2] ttps://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki/

[3] G.J. Tretmans, “Test Generation with Inputs, Outputs and
Repetitive Quiescence”, Technical Report TR-CTIT-96-26,
Centre for Telematics and Information Technology
University of Twente, Enschede, 1996.

[4] R.G. de Vries and J. Tretmans, “Towards Formal Test
Purposes”, Formal Approaches to Testing of Software –
FATES’01, number NS-01-4 in BRICS Notes Series,
University of Aarhus, Denmark, 2001, pp. 61–76.

[5] http://www.unitesk.com/

[6] http://forge.ispras.ru/projects/microtesk

[7] https://www.conformiq.com/

[8] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, and
N.Yevtushenko, “FSM-based conformance testing methods:
a survey annotated with experimental evaluation”,
Information and Software Technology Journal, Elsevier,
2010 (52), pp. 1286-1297.

[9] M. Zhigulin, N. Yevtushenko, S. Maag, A. Cavalli,
“FSM-Based Test Derivation Strategies for Systems with
Time-Outs”, In Proc. of the 11th International Conference
on Quality Software (QSIC), Madrid, 2011, pp. 141-149.

[10] M. Gromov, D. Popov, N. Yevtushenko, “Deriving test
suites for timed Finite State Machines”, Proceedings of IEEE
East-West Design & Test Symposium, Kharkov, Ukraine,
SPB FL Stepanov V.V., 2008, pp. 339-343.

[11] K. El-Fakih, V. Trenkaev, N. Spitsyna, N. Yevtushenko,
“FSM Based Interoperability Testing Methods”, In Proc. of
the IFIP 16th International Conference on Testing of
Communicating Systems, U.K., 2004, LNCS 2978, pp. 60–
75.

[12] N. Shabaldina, K. El-Fakih, N.
Yevtushenko, “Testing Nondeterministic Finite StateMachin
es with Respect to the Separability Relation”, Springer,
Berlin, 2007, pp. 138-154.

[13] A. Petrenko, N. Yevtushenko, “Conformance tests as
checking experiments for partial nondeterministic FSM”,
Proc. 5th International Workshop on Formal Approaches to
Testing of Software, 2005.

IEEE EWDTS, Batumi, Georgia, September 26-29, 2015 219

