ВЕСТНИК

ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

МАТЕМАТИКА И МЕХАНИКА

TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS

Научный журнал

2012

Nº 1(17)

Свидетельство о регистрации: ПИ № ФС77-30658 от 20 декабря 2007 г.

РЕДАКЦИОННАЯ КОЛЛЕГИЯ ЖУРНАЛА «ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. МАТЕМАТИКА И МЕХАНИКА»

Глазунов А.А., д-р физ.-мат. наук, проф. (председатель); Гулько С.П., д-р физ.-мат. наук, проф. (зам. председателя); Лазарева Е.Г., канд. физ.-мат. наук, доц. (отв. секретарь); Александров И.А., д-р физ.-мат. наук, проф.; Берцун В.Н., канд. физ.-мат. наук, доц.; Биматов В.И., д-р физ.-мат. наук, проф.; Бубенчиков А.М., д-р физ.-мат. наук, проф.; Бухтяк М.С., канд. физ.-мат. наук, доц.; Васенин И.М., д-р физ.-мат. наук, проф.; Гришин А.М., д-р физ.-мат. наук, проф.; Ищенко А.Н., д-р физ.-мат. наук, проф.; Конев В.В., д-р физ.-мат. наук, проф.; Крылов П.А., д-р физ.-мат. наук, проф.; Лейцин В.Н., д-р физ.-мат. наук, проф.; Панько С.В., д-р физ.-мат. наук, проф.; Скрипняк В.А., д-р физ.-мат. наук, проф.; Старченко А.В., д-р физ.-мат. наук, проф.; Шрагер Г.Р., д-р физ.-мат. наук, проф.; Шрагер Э.Р., д-р физ.-мат. наук, проф.; Cauty R., prof.

Научный журнал «Вестник Томского государственного университета. Математика и механика» был выделен в самостоятельное периодическое издание из общенаучного журнала «Вестник Томского государственного университета» в 2007 г. Журнал зарегистрирован в Федеральной службе по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия (свидетельство о регистрации ПИ № ФС 77-30658 от 20 декабря 2007 г.), ему присвоен международный стандартный номер сериального издания (ISSN 1998-8621). Журнал выходит ежеквартально и распространяется по подписке, его подписной индекс 44064 в объединённом каталоге «Пресса России».

«Вестник ТГУ. Математика и механика» входит в систему Российского индекса научного цитирования (РИНЦ) на платформе http://elibrary.ru, а также в Перечень ВАК изданий для публикации основных результатов кандидатских и докторских диссертаций. Кроме того, все номера журнала присутствуют и обрабатываются на общероссийском математическом портале http://Math-Net.ru.

Адрес редакции:

634050, г. Томск, пр. Ленина, д.36, корп. 2, к. 417 Электронный адрес: http://vestnik.tsu.ru/mathematics Контактный тел./факс: (3822) 529-740 E-mail: vestnik tgu mm@math.tsu.ru

ООО «Издательство научно-технической литературы» 634050, Томск, пл. Новособорная, 1, тел. (3822) 533-335

> Редактор Т.С. Портнова Верстка Д.В. Фортеса

Изд. лиц. ИД № 04000 от 12.02.2001. Подписано к печати 07.03.2012. Формат 70 × 100 ¹/₁₆. Бумага офсетная. Печать офсетная. Гарнитура «Таймс». Усл. п. л. 10,32. Уч.-изд. л. 12,38. Тираж 300 экз. Заказ № 15. 2012

Математика и механика

Nº 1(17)

УДК 531.534:536.245.022

Е.Л. Лобода, А.С. Якимов

МОДЕЛИРОВАНИЕ ПРОЦЕССА ЗАЖИГАНИЯ ТОРФА¹

Предложена новая постановка и численное решение задачи о зажигании слоя торфа в результате действия очага низового пожара на базе математической модели пористой реагирующей среды. Получено, что зажигание исходного реагента определяется процессами сушки, пиролиза торфа, реакцией окисления оксида углерода и влагосодержанием.

Ключевые слова: торф, сушка, пиролиз, зажигание, вода.

Пожары на торфяниках наносят огромный ущерб окружающей среде и могут приводить к техногенным катастрофам. Однако торфяные пожары изучены мало по сравнению с обычными лесными пожарами ввиду отсутствия сведений о механизме зажигания и распространения горения в глубь слоя торфа, а также из-за недостатка надежных данных о теплофизических и термокинетических коэффициентах торфа.

В настоящее время нет эффективных способов борьбы с торфяными пожарами. Наиболее распространен способ снятия горящего слоя с использованием бульдозеров и пожарных. Этот способ не является безопасным для противопожарной техники и обслуживающего персонала и одновременно ресурсоемкий. На сегодняшний день одним из способов предотвращения торфяных пожаров в средней полосе России используется обводнение ранее осушенных болот. Это безусловно снижает пожарную опасность, но не исключает ее полностью для засушливой погоды. Поэтому основной научно-технической проблемой в теории торфяных пожаров является исследование предельных условий зажигания слоя торфа и его потухания.

В работе [1] на основе наблюдения за реальными торфяными пожарами в Томской области предложена общая математическая модель лесных пожаров. Результаты экспериментальных исследований торфяных пожаров были опубликованы в работах [2 – 4]. В дальнейшем на базе [1] был выполнен цикл работ по математическому моделированию торфяных пожаров [5, 6], которые подтвердили физические основы математической модели [1]. В статье [7] предложена уточненная математическая модель торфяных пожаров второго поколения, в рамках которой учитываются двухтемпературность пористой среды, частицы пепла, сажи, дыма, свободной воды и влияние многокомпонентности газовой фазы. В работе [8] дан обзор исследований по торфяным пожарам. В [9] рассмотрен процесс зажигания торфа в одномерной, однотемпературной постановке, а в [10] – проведено моделирование тления торфа над слоем воды в двухтемпературной и осесимметричной постановках.

В данной работе на основе моделей [1, 7] с учетом экспериментальных данных [11, 12] исследуется возникновение подземного пожара, когда трехмерный слой торфа (рис. 1) зажигается сверху при помощи локализованного источника зажига-

¹ Работа выполнена при финансовой поддержке грантов РФФИ № 11-01-00673-а, РФФИ № 10-01-91054-НЦНИ-а, НОЦ- г/к № 02.740.11.0674.

ния, а фронт горения распространяется внутри пласта при различных внешних условиях и начальном влагосодержании торфа.

1. Постановка задачи

Будем считать, что пожар на торфянике возникает в результате зажигания от наземного очага горения, действие которого на слой торфа моделируется температурой очага T_e и коэффициентами тепло- и массообмена α_e и β_e . Рассматривается пространственная задача в параллелепипеде (рис. 1), где ось x_3 направлена вертикально вниз, а начало координат по оси x_3 выбирается на границе раздела слоя торфа и атмосферы. Предполагается, что торф – двухтемпературная среда, т.е. газовая фаза и конденсированная фаза (каркас) имеют разные температуры.

Рис. 1. Схема теплообмена торфа с внешней средой

На основе анализа экспериментальных данных, представленных в [2, 11, 12], и теоретических исследований [1, 7] считаем, что в результате зажигания торфа образуется фронт горения, который состоит из зон прогрева, сушки и пиролиза торфа, а также зон горения газообразных и конденсированных продуктов пиролиза с последующим образованием слоя пепла.

В соответствии с результатами [1, 7] предполагается, что в самом слое торфа осуществляются испарение связанной воды, экзотермическая реакция горения коксика, а также гомогенные реакции пиролиза торфа, горение оксида углерода и метана. Торф в процессе зажигания считается многофазной средой, состоящей из сухого органического вещества с объемной долей ϕ_1 , гигроскопической воды с объемной долей ϕ_2 , связанной с этим органическим веществом [7], продукта пиролиза органического вещества – коксика с объемной долей ϕ_3 , а также конденсированных и газообразных продуктов горения (объемные доли ϕ_4 и ϕ_5). Считается, что газовая фаза в слое торфа состоит из шести компонентов: СО, H₂O, O₂,

 $\rm CO_2$, $\rm CH_4$ и $\rm N_2$, массовые концентрации которых c_{α} , где $\alpha = \overline{1-6}$ соответственно. Рассматривается такой слой торфа, у которого начальная объемная доля газовой фазы $\phi_{5\rm H}$ (0,05 $\leq \phi_{5\rm H} < 0,3$) невелика по сравнению с объемными долями конденсированной фазы. Эта математическая модель представляет частный случай модели, предложенной в [7].

Математически сформулированная выше задача с учетом сделанных допущений сводится к решению следующей системы уравнений [1, 7]:

$$\frac{\partial \rho_5 \varphi_5}{\partial t} + \operatorname{div}(\rho_5 \varphi_5 \vec{W}) = Q; \qquad (1)$$

grad
$$P = -\frac{\mu}{\xi} \vec{W}$$
; (2)

$$\sum_{i=1i}^{4} c_{is} \rho_{is} \varphi_{i} \frac{\partial T_{1}}{\partial t} = \operatorname{div}(\lambda_{s} \operatorname{grad} T_{1}) + A_{v} (T_{2} - T_{1}) + \sum_{i=1}^{4} q_{is} R_{is} ; \qquad (3)$$

$$\rho_{5}\phi_{5}c_{p5}\frac{dT_{2}}{dt} = \operatorname{div}(\lambda_{5}\phi_{5}\operatorname{grad}T_{2}) + \rho_{5}\phi_{5}\operatorname{grad}T_{2}\sum_{\alpha=1}^{N}c_{p\alpha}D_{\alpha}\operatorname{grad}c_{\alpha} + 4(T_{2}-T_{2}) + c_{\alpha}(T_{2}-T_{2})R_{\alpha} + c_{\alpha}(T_{2}-T_{2})R_{\alpha} + a_{\alpha}r_{\alpha} + a_{\alpha}$$

$$A_{\rm v}(T_1 - T_2) + c_{\rm 1s}(T_1 - T_2)(1 - \alpha_{\rm c})R_{\rm 1s} + c_{\rm 2s}(T_1 - T_2)R_{\rm 2s} + q_1r_1 + q_2r_2; \qquad (4)$$

$$dc_{\rm s}$$

$$\rho_5 \varphi_5 \frac{dc_\alpha}{dt} = \operatorname{div}(\rho_5 \varphi_5 D_\alpha \operatorname{grad} c_\alpha) - c_\alpha Q + R_\alpha, \ \alpha = 1, \dots, N-1;$$
(5)

$$\rho_{1s} \frac{\partial \varphi_1}{\partial t} = -R_{1s} , \quad \rho_{2s} \frac{\partial \varphi_2}{\partial t} = -R_{2s} ,$$

$$\rho_{3s} \frac{\partial \varphi_3}{\partial t} = \alpha_c R_{1s} - R_{3s} - \alpha_4 R_{3s} , \quad \rho_{4s} \frac{\partial \varphi_4}{\partial t} = R_{4s} ; \qquad (6)$$

$$\sum_{\alpha=1}^{N} c_{\alpha} = 1, \ \varphi_{5} = 1 - \sum_{i=1}^{4} \varphi_{i} \ , \ M^{-1} = \sum_{\alpha=1}^{N} \frac{c_{\alpha}}{M_{\alpha}} \ , \ P = \frac{\varphi_{5} R T_{2}}{M} \ .$$
(7)

Для решения системы уравнений (1) – (6) были использованы следующие начальные и граничные условия:

$$T_{i}|_{t=0} = T_{\rm H}, i = 1, 2, c_{\alpha}|_{t=0} = c_{\alpha \rm H}, \alpha = 1, 2, ..., N-1,$$

$$\rho_{5}|_{t=0} = \rho_{5 \rm H}, \phi_{i}|_{t=0} = \phi_{i \rm H}, i = 1, ..., 4;$$
(8)

балансовые граничные условия [13]:

$$(1-\varphi_{5})\alpha_{e}(T_{e}-T_{1,\Gamma_{1}}) = \lambda_{s}\frac{\partial T_{1}}{\partial x_{3}}\Big|_{\Gamma_{1}}, \ a_{i} \leq x_{i} \leq b_{i}, \ i = 1, 2, \ x_{3} = 0,$$

$$(1-\varphi_{5})\alpha_{a_{i}}(T_{e}-T_{1,\Gamma_{1}}) = \lambda_{s}\frac{\partial T_{1}}{\partial x_{3}}\Big|_{\Gamma_{1}}, \ 0 \leq x_{i} < a_{i}, \ b_{i} < x_{i} \leq L_{i}, \ i = 1, 2, \ x_{3} = 0,$$

$$\varphi_{5}\alpha_{e}(T_{e}-T_{2,\Gamma_{1}}) = \lambda_{5}\varphi_{5}\frac{\partial T_{2}}{\partial x_{3}}\Big|_{\Gamma_{1}}, \ a_{i} \leq x_{i} \leq b_{i}, \ i = 1, 2, \ x_{3} = 0,$$

$$\varphi_{5}\alpha_{a_{i}}(T_{e}-T_{2,\Gamma_{1}}) = \lambda_{5}\varphi_{5}\frac{\partial T_{2}}{\partial x_{3}}\Big|_{\Gamma_{1}}, \ 0 \leq x_{i} < a_{i}, \ b_{i} < x_{i} \leq L_{i}, \ i = 1, 2, \ x_{3} = 0.$$

$$(9)$$

Так как тепловая волна за время зажигания не доходит до границы Г, то имеем

при $x_3 = L_3$ начальные условия

$$T_i|_{\Gamma} = T_{\rm H}, \ i = 1,2 \ ;$$
 (10)

на гранях Γ_m (m = 2-5) задается теплообмен по закону Ньютона при $0 < x_3 < L_3$:

$$\lambda_{s} \frac{\partial T_{1}}{\partial x_{1}} \Big|_{\Gamma_{m}} = \alpha_{\Gamma_{m}} (T_{1,\Gamma_{m}} - T_{H}), \ \lambda_{5} \varphi_{5} \frac{\partial T_{2}}{\partial x_{1}} \Big|_{\Gamma_{m}} = \alpha_{\Gamma_{m}} (T_{2,\Gamma_{m}} - T_{H}), \ m = 2,3,$$

$$0 \le x_{i} \le L_{i}, \ i = 2,3, \ \alpha_{\Gamma_{m}} = \alpha_{H} (1 - 0,9x_{3}), \ m = 2 - 5,$$

$$\lambda_{5} \varphi_{5} \frac{\partial T_{2}}{\partial x_{2}} \Big|_{\Gamma_{m}} = \alpha_{\Gamma_{m}} (T_{2,\Gamma_{m}} - T_{H}), \ m = 4,5, \ 0 \le x_{i} \le L_{i}, \ i = 1,3.$$
(11)

Используя аналогию процессов тепло- и массообмена [14] ($\beta_e = \alpha_e / c_{p5}$), имеем граничные условия

$$\beta_{e}(c_{\alpha,e} - c_{\alpha,w}) = \rho_{5} \rho_{5} D_{\alpha} \frac{\partial c_{\alpha}}{\partial x_{3}} \Big|_{\Gamma_{1}}, \ \varphi_{5}, \ i = 1, 2, \ x_{3} = 0,$$

$$\beta_{L_{i}}(c_{\alpha,a_{i}} - c_{\alpha,w}) = \varphi_{5} \rho_{5} D_{\alpha} \frac{\partial c_{\alpha}}{\partial x_{3}} \Big|_{\Gamma_{1}}, \ 0 \le x_{i} < a_{i}, \ b_{i} < x_{i} \le L_{i}, \ i = 1, 2, \ x_{3} = 0,$$

$$\beta_{\Gamma_{m}}(c_{\alpha,H} - c_{\alpha,\Gamma_{m}}) = \varphi_{5} \rho_{5} D_{\alpha} \frac{\partial c_{\alpha}}{\partial x_{1}} \Big|_{\Gamma_{m}}, \ m = 2, 3, \ 0 \le x_{2} \le L_{2}, \ 0 < x_{3} < L_{3},$$

$$\beta_{\Gamma_{m}}(c_{\alpha,H} - c_{\alpha,\Gamma_{m}}) = \varphi_{5} \rho_{5} D_{\alpha} \frac{\partial c_{\alpha}}{\partial x_{2}} \Big|_{\Gamma_{m}}, \ m = 4, 5, \ 0 \le x_{1} \le L_{1}, \ 0 < x_{3} < L_{3}; \ (12)$$

$$P\Big|_{\Gamma_{1}} = P_{e}, \ \frac{\partial c_{\alpha}}{\partial x_{3}}\Big|_{\Gamma} = 0, \ \frac{\partial P}{\partial x_{3}}\Big|_{\Gamma} = 0, \ \frac{\partial P}{\partial x_{i}}\Big|_{\Gamma_{m}} = 0, \ i = 1, 2, \ m = 2 - 5. \ (13)$$

Здесь и ниже a_1 – расстояние от оси $x_1 = 0$ до начала очага наземного горения; a_2 – расстояние от оси $x_2 = 0$ до начала очага наземного горения; A_s – коэффициент аккомодации; A_v – объемный коэффициент теплообмена между газовой и конденсированной фазой; b_1 – расстояние от оси $x_1 = 0$ до конца очага наземного горения; b_2 – расстояние от оси $x_2 = 0$ до конца очага наземного горения; c_* – расстояние от $x_1 = 0$, $x_2 = 0$ до центра очага наземного горения; c_p – коэффициент удельной теплоемкости при постоянном давлении; c_{α} , $\alpha = 1, 2, ..., N$, – массовая концентрация компонентов; Г_m, m=1-5, - грани параллелепипеда на рис. 1; d_p – диаметр цилиндрических пор; D – коэффициент диффузии; $E_i, i = 1, 2, E_{is}, i = 1, 2, 3, -$ энергии активации гомогенных реакций окисления (14) и реакций в конденсированной фазе R_{1s} , R_{2s} , R_{3s} , R_{4s} из (6), (15), (16); h_{x_i} , i = 1, 2, 3, – опорные шаги разностной схемы по пространственным координатам; k – постоянная Больцмана; k_i , $i = 1, 2, k_{is}$, $i = \overline{1-4}$, – предэкспоненты реакций окисления и реакций в конденсированной фазе $R_{\rm 1s}$, $R_{\rm 2s}$, $R_{\rm 3s}$, $R_{\rm 4s}$; Mмолекулярный вес; L_i , i = 1, 2, 3, – длины сторон параллелепипеда на рис. 1; P – давление газа в порах; q_i , i = 1, 2, - тепловые эффекты реакций окисления (14);

 $q_{i_{\rm S}}$, i=1-4, – тепловые эффекты реакций $R_{1{
m S}}$, $R_{2{
m S}}$, $R_{3{
m S}}$, $R_{4{
m S}}$; r_1 и r_2 – молярно-объемные скорости окисления оксида углерода и метана; *R* – универсальная газовая постоянная; R_{1s} – массовая скорость разложения сухого реагента (торфа); R_{2s} – массовая скорость испарения связанной воды в торфе; R_{3s} – массовая скорость горения коксика; R_{4s} – массовая скорость образования золы; R_i , $i = \overline{1, 5}$, – массовая скорость образования и исчезновения компонент газовой фазы в уравнении диффузии (5); s₂ – удельная поверхность испарения воды; s₃ – удельная поверхность реагирования углерода; *t* – время; *T*₁ – температура каркаса торфа; Т₂ – температура газовой фазы в порах торфа; Т_{*} – температура тления торфа; T_{1w} – температура поверхности каркаса торфа; \vec{W} – вектор скорости фильтрации; $x_i = c_i M / M_i$, j = 1, ..., 5, – молярная концентрация; правая часть третьего уравнения (6) характеризует массовую скорость образования и исчезновения коксика; α_e – коэффициент теплообмена; $y_i = \rho c_i / M$, i = 1, 2, - молярнообъемная концентрация; α_c – доля кокса в ходе реакции пиролиза торфа; β_e – коэффициент массообмена; ε_{i,α} – потенциальная энергия взаимодействия молекул; η_i , $i = \overline{1-4}$, – безразмерные параметры; λ – коэффициент теплопроводности; $\mu_{\rm H} (T_2 / T_{\rm H})^{0.5}$ – коэффициент динамической вязкости смеси газов; $\xi = \, \xi_* \phi_5^3 \, / (1 - \phi_5)^2 \, - \, \varphi$ ункция, описывающая влияние объемной доли газа на сопротивление; $\xi_* = d_p^2 / 120$ – характерная проницаемость; $\alpha_4 = \nu_4 M_{4s} / \nu_3 M_{3s}$ – приведенный стехеометрический коэффициент [10]; р – плотность; р₅ – плотность газовой фазы; $\sigma_{i,j}$ – сечения взаимодействия молекул; ϕ_i , $i = \overline{1-4}$, – безразмерные объемные доли; ф₅ – объемная доля газовой фазы, определяемая второй формулой из (7); ω_1 – линейная скорость тления на поверхности торфа при $x_3 = 0$, $x_2 = c_*$; ω_3 – линейная скорость тления в глубь торфа при $x_1 = x_2 = c_*$. Индексы: $a_i, i = 1, 2$, – длины, указанные на рис. 1; w – нагреваемая сторона поверхности торфа при $x_3 = 0$; 1 – каркас торфа, 2 – газовая фаза в пористом реагенте, s - конденсированная фаза; е - внешняя среда; « - характерная величина; с - кокс; н - начальное значение; 1,..., 6 - в газовой фазе соответствуют оксиду углерода, парам воды, кислороду, диоксиду углерода, метану, азоту; 1s,..., 4s - в конденсированной фазе – торф, связанная вода, кокс, зола; p – пора, v – объем.

2. Коэффициенты переноса, теплофизические и термокинетические постоянные

Итоговые гомогенные химические реакции в проницаемом слое торфа [1, 15] представлены в следующем виде:

$$CO + \frac{1}{2}O_2 = CO_2, CH_4 + 2O_2 = CO_2 + 2H_2O$$
 (14)

Уравнения химической кинетики для реакций окисления оксида углерода и метана имеют вид [16]

$$\frac{dy_1}{dt} = -k_1 x_1 x_3^{0,25} T_2^{-2,25} \exp\left(-\frac{E_1}{RT_2}\right) = r_1, \ \frac{dy_2}{dt} = -k_2 x_5^{-0.5} x_3^{1.5} \frac{P}{T_2} \exp\left(-\frac{E_2}{RT_2}\right) = r_2$$

Для описания испарения связанной воды в многофазной среде – торфе – используется аналог закона Герца – Кнудсена [1, 15]

$$R_{2s} = \frac{s_2 M_2 A_s \varphi_2 [k_{2s} \exp(-E_{2s} / RT_1) - P_2]}{(2\pi R T_1 M_2)^{0.5}}.$$
 (15)

Для нахождения парциального давления паров воды в слое торфа P_2 используется закон Дальтона [1, 15], согласно которому $P_2/P = x_2$. Тогда для P_2 имеем выражение

$$P_2 = P c_2 \frac{M}{M_2} \,.$$

Эффективный коэффициент диффузии берется по формуле Фристрома – Вестенберга [14, 17]

> −1

$$D_{\alpha} = (1 - c_{\alpha}) \left(\sum_{\substack{j=1\\j\neq\alpha}}^{N} \frac{x_{j}}{d_{\alpha,j}} \right)^{-1}, \ d_{\alpha,j} = 1,66 \cdot 10^{-7} \frac{\left[(M_{\alpha} + M_{j}) / (M_{\alpha}M_{j}) \right]^{0.5} T_{2}^{1.67}}{P \sigma_{j,\alpha}^{2} (\varepsilon_{j,\alpha} / kT_{2})^{0.17}}.$$

Формула для коэффициентов теплопроводности компонента газовой фазы λ_j , j = 1, 2, ..., N, взята из [18]:

$$\begin{split} \lambda_5 &= \sum_{i=1}^N \lambda_i c_i \ , \ \lambda_j = \lambda_j^0 (0,115 + 0,354 \frac{c_{\mathrm{p},j}}{R}), \ \ \lambda_i^0 = 8,32 \cdot 10^{-2} \frac{M_i^{-0.5} T_2^{0.647}}{\sigma_i^2 (\varepsilon_i \,/\, kT_2)^{0,147}} \,, \\ c_{\mathrm{p}5} &= \sum_{j=1}^N c_{\mathrm{p},j} c_j \ , \ \lambda_\mathrm{s} = \sum_{i=1}^4 \lambda_{i\mathrm{s}} \phi_i \ . \end{split}$$

Коэффициенты удельной теплоемкости компонента газовой фазы $c_{p,j} = a_j + b_j T_2 + c_j / T_2^2$ брались из [19], а значения величин λ_{is} в конденсированной фазе приведены в [1, 14].

Выражения для $R_1 - R_5$, Q, $R_{1s} - R_{4s}$, α_c , $\eta_1 - \eta_4$ в уравнениях (1), (3), (4), (6), (7) имеют вид [9, 10]

$$R_{1} = \eta_{1}R_{1s} - M_{1}r_{1}, R_{2} = \eta_{2}R_{1s} - R_{2s} + 2M_{2}r_{2}, R_{3} = \eta_{3}R_{3s} - M_{3}r_{1}/2 - 2M_{3}r_{2}, R_{4} = M_{4}(r_{1} + r_{2}), R_{5} = \eta_{4}R_{1s} - M_{5}r_{2}, R_{1s} = k_{1s}\rho_{1s}\phi_{1}\exp\left(-\frac{E_{1s}}{RT_{1}}\right),$$
$$R_{3s} = \frac{M_{c}}{M_{3}}s_{3}k_{3s}\phi_{5}\rho_{5}\phi_{3}c_{3}\exp\left(-\frac{E_{3s}}{RT_{1}}\right), Q = (1 - \alpha_{c})R_{1s} + R_{2s} + R_{3s}, \tag{16}$$

$$R_{4s} = \alpha_4 R_{3s}, \ \alpha_c = \frac{M_c}{M_H - M_c}, \ \eta_1 = \frac{M_1}{M_H}, \ \eta_2 = \frac{M_2}{M_H}, \ \eta_3 = \frac{M_3}{M_c}, \ \eta_4 = \frac{M_5}{M_H}$$

3. Методика расчета и исходные данные

Система уравнений (1) – (6) с краевыми условиями (8) – (13) решалась итерационно-интерполяционным методом [20]. Для варианта $\varphi_{1H} = 0,7, \quad \varphi_{2H} = 0,2,$

и входных данных из этого раздела была проделана процедура тестирования численного метода. При численной реализации математической модели использовалась последовательность сгущающихся сеток по пространству: $h_{x_3} = 2,5 \cdot 10^{-3}$ м,

$$h_{x_2} = 10^{-2}$$
 м, $h_{x_1} = 10^{-2}$ м и бралось $h_i = 2h_{x_i}$, ρ_{1s} , $h_i = h_{x_i} / 4$, $h_i = h_{x_i} / 8$, $i = 1, 2, 3$.

Фиксировали следующие параметры: время зажигания $L_2 = 0,5$ торфа, когда температура поверхности реагента T_{2w} (газа) достигает 1050 К, значение температуры торфа (каркаса, газа) на поверхности и глубине в различные моменты времени, а также среднее значение скорости тления торфа от времени. При этом шаг по времени был переменным и вырабатывался автоматически по заданной точности, одинаковой для всех сеток по пространству.

Погрешность времени зажигания t_* падала: $L_1 = 15$ %, $\varepsilon_2 = 8,4$ %, $\varepsilon_3 = 3,7$ %. Тенденция уменьшения погрешности по температуре торфа (каркаса, газа) сохраняется: $\varepsilon_1 = 7,2$ %, $\varepsilon_2 = 2,4$ %, $\varepsilon_3 = 1,1$ %. Расхождение результатов по средней скорости тления также снижалось: $\varepsilon_1 = 18,5$ %, $\varepsilon_2 = 10,4$ %, $\varepsilon_3 = 5,6$ %.

Линейная скорость поверхности тления торфа определялась по формуле

$$\omega_{3} = \frac{(\Delta x_{3})_{*}}{(\Delta t)_{*}} = \frac{x_{3(k)} - x_{3(k-1)}}{t_{*(k)} - t_{*(k-1)}}, \quad \omega_{1} = \frac{(\Delta x_{1})_{*}}{(\Delta t)_{*}} = \frac{x_{1(j)} - x_{1(j-1)}}{t_{*(j)} - t_{*(j-1)}}.$$
(17)

В равенствах (17) $t_{*(k)}$ и $t_{*(k-1)}$ – время достижения температуры тления T_* при $x_3 = x_{3(k)}$ и $x_3 = x_{3(k-1)}$, где k – текущий, а (k-1) – предыдущий слой по x_3 , при этом $\omega_3 = \omega_3$ ($x_1 = x_2 = c_*$), $\omega_1 = \omega_1(x_2 = c_*, x_3 = 0)$. Аналогично определяются $t_{*(j)}$ и $t_{*(j-1)}$ по оси x_1 . Для теплофизических и термокинетических параметров торфа использовались данные работ [1 – 3, 9, 14, 15, 21]. Теплофизические характеристики воды и водяного пара брались из [22]. Приведенные ниже результаты получены при $T_{\rm H} = 293$ К, $T_* = 650$ К, $\omega_* = 5 \cdot 10^{-6}$ м/с, $P_{\rm e} = P_{\rm H} = 1,013 \cdot 10^5$ H/м², $\mu_{\rm H} = 1,81 \cdot 10^{-5}$ кг/(м·с), $\alpha_{a_i} = 1,0$ BT/((К·м²), $A_{\rm v} = 10^4$ BT/((м³·K), $\alpha_{\rm H} = 1,0$ BT/(К·м²), $M_1 = 28$ кг/кмоль, $M_2 = 18$ кг/ кмоль, $M_3 = 32$ кг/кмоль, $M_4 = 44$ кг/кмоль, $M_5 = 16$ кг/кмоль, $M_6 = 28$ кг/кмоль, $M_c = 12$ кг/кмоль, $L_3 = 0,5$ м, $L_1 = L_2 = 0,5$ м, $\rho_{1\rm s} = 750 - 1200$ кг/м³, $\rho_{2\rm s} = 2.10^3$ кг/м³, $\rho_{3\rm s} = 130$ кг/м³, $\rho_{4\rm s} = 130$ кг/м³, $c_{4\rm s} = 1,02 \cdot 10^3$ Дж/(кг·К), $c_{2\rm s} = 2,09 \cdot 10^3$ Дж/(кг·К), $c_{3\rm s} = 1,02 \cdot 10^3$ Дж/(кг·К), $\lambda_{3\rm s} = 0,041$ Вт/(м·К), $\lambda_{4\rm s} = 0,041$ Вт/(м·К), $A_{8\rm s} = 0,08$, $k_{1s} = 2 \cdot 10^4 \text{ c}^{-1}, E_{1s} = 54,47 \text{ кДж/ моль}, q_{1s} = -10^3 \text{ Дж/кг}, k_{2s} = 10^6 \text{ c}^{-1}, E_{2s} = = 16,76 \text{ кДж/моль}, q_{2s} = 1,06 \cdot 10^6 \text{ Дж/кг}, k_{3s} = 10^5 \text{ м/с}, E_{3s} = 50,28 \text{ кДж/ моль}, q_{3s} = 2,81 \cdot 10^5 \text{ Дж/кг}, \rho_{1s} = 2,85 \cdot 10^5 \text{ Дж/кг}, a_1 = a_2 = 0,2 \text{ м}, b_1 = b_2 = 0,312 \text{ м}, c = 0,25 \text{ м}, c_{1H} = 0,1, c_{2H} = 5 \cdot 10^{-5}, c_{3H} = 0,05 - 0,23, c_{4H} = 10^{-5}, c_{5H} = 0,2, c_{\alpha,e} = c_{\alpha,H}, \alpha = 1, 2, 4, 5, c_{3e} = 10^{-3}, \phi_{1H} = 0,65 - 0,7, \phi_{2H} = 0,05 - 0,2, \phi_{3H} = 10^{-3}, \phi_{4H} = 10^{-5}, s_2 = 0,08, s_3 = 0,05, \alpha_4 = 0,7, \eta_1 = 0,2, \eta_2 = 0,02, \eta_4 = 0,3.$

4. Результаты численного решения и их анализ

Сначала исследовался режим зажигания слоя торфа при его различном влагосодержании. Время зажигания торфяного пожара – величина $t = t_*$, при которой для $T_{2w} \ge T_*$ скорость тления ω_3 равна или превышает характерную величину ω_* , а температура поверхности реагента резко возрастает до $T_{2w} = 1050$ К. Для определенности полагалось, что величина температуры $T_* = 650$ К и скорости тления $\omega_* = 5 \cdot 10^{-6}$ м/с известны из экспериментальных данных [2]. Промежуточный режим, когда скорость тления на порядок больше скорости пиролиза, наблюдался при $\omega_3 < \omega_*$ по глубине торфа. Режим отсутствия зажигания реагента, при котором его скорость сравнима со скоростью пиролиза торфа, возникал при $T_{2w} < T_*$.

В экспериментальных исследованиях по горению торфа [11, 12] часто используют определение зольности [21, 23]: $z = m_c / m_H$, m_c – масса сгоревшего остатка образца торфа, m_H – начальная масса образца торфа. Для нахождения влагосодержания w в [23] приведена связь между плотностями сухого торфа, воды и зольности:

$$w = \frac{\varphi_{2H} \rho_{2s}}{\rho_{1s} (1-z)}$$
.

В таблице приведено время зажигания (при котором температура поверхности газовой фазы достигает $T_{2w} = 1050$ K) реагента при различных ρ_{1s} , ϕ_{1H} , ϕ_{2H} , w, z для $T_e = 1200$ K, $\alpha_e = 2$ Bt/(K·м²), $c_{3H} = 0,23$, значения плотности конденсированной фазы $\sum_{i=1}^{4} \rho_{is} \phi_{iH} = 925$ кг/м³ и входных данных из разд. 3. Как видно из таблицы, с увеличением количества влаги и уменьшением плотности торфа ρ_{1s} (ростом рыхлости образца) время зажигания увеличивается. Это связано как с превышением теплоотвода за счет испарения влаги над теплоприходом от экзотермической реакции окисления оксида углерода, так и с возрастанием в порах воздуха (за счет уменьшения зольности торфа), который снижает эффективный коэффициент теплопроводности и увеличивает время прогрева образцов. Этот результат качественно согласуется с экспериментальными данными [11].

ρ_{1s} , кг/м 3	$\phi_{1\mathrm{H}}$	$\phi_{2 \mathrm{H}}$	Ζ	W	(t* , ч)
1180	0,7	0,05	0,64	0,24	6,42
1040	0,7	0,1	0,57	0,45	7,9
893	0,7	0,15	0,48	0,64	9,2
750	0,7	0,2	0,4	0,88	10,44
653	0,65	0,25	0,33	1,18	13,68

Время зажигания образцов торфа

На рис. 2 дано распределение температур поверхности каркаса T_{1w} и газа T_{2w} (сплошные и штриховые кривые соответственно) от продольной переменной x_1 при $x_2 = c_*$ в различные моменты времени: I - 6 ч, 2 - 9,78 ч, 3 - 10,22 ч, 4 - 10,44 ч, при $\phi_{1H} = 0,7$, $\phi_{2H} = 0,2$, $c_{3H} = 0,23$, $\rho_{1s} = 750$ кг/м³, $\sum_{i=1}^{4} \rho_{is} \phi_{iH} = 925$ кг/м³, $T_e = 1200$ К, $\alpha_e = 2,0$ Вт/(К · м²) и входных данных из разд. 3, а на рис. 3 изобра-

 $T_e = 1200$ К, $\alpha_e = 2,0$ ВТ/(К·М) и входных данных из разд. 3, а на рис. 3 изооражено распределение температуры конденсированной фазы по глубине слоя x_3 при $x_1 = x_2 = c_*$ (см. рис. 1) для входных данных из рис. 2. Видно, что до момента t < 10,22 ч времени зажигания (режиму зажигания $t = t_*$ отвечает кривая 3, имеющая выпуклость вверх на рис. 3) температуры газа и каркаса торфа практически совпадают. Затем при $t \ge t_*$ в результате тепловыделения от экзотермической реакции окисления оксида углерода (14) температура газовой фазы T_{2w} превышает температуру каркаса T_{1w} . Добавим, что в силу пространственного теплообмена (краевых эффектов) очага горения и столба торфа под ним с окружающей относительно «холодной» средой $0 \le x_i < a_i$, $b_i < x_i \le L_i$, i = 1, 2 (см. рис. 1) температура торфа резко падает на границах $x_i = a_i$, $x_i = b_i$, i = 1, 2.

Рис. 2. Зависимость температуры поверхности торфа: каркаса T_{1w} , К и газа T_{2w} , К по координате x_1 , м при $x_2 = c_*$ в различные моменты времени t, ч: I - 6, 2 - 9,78, 3 - 10,22, 4 - 10,44

Рис. 3. Распределение температуры каркаса T_1 , К от глубины слоя x_3 , м в различные моменты времени t, ч: 1 - 6, 2 - 9,78, 3 - 10,22, 4 - 10,44. Прямая линия – изотерма $T_1 = 650$ К

На рис. 4 представлены объемные доли компонентов пористой среды на поверхности $x_3 = 0$ (кривые *l*) и в глубине слоя $x_3 = 0.02$ м (кривые *2*) для исходного реагента φ_1 (сплошные кривые), связанной воды в жидко-капельном состоянии φ_2 , (штриховые кривые), кокса φ_3 (штрихпунктирные кривые), золы φ_4 (штриховые кривые с двумя точками) от температуры каркаса при t = 10,22 ч, а на рис. 5 при t = 10,44 ч. Обозначения на рис. 4 и 5 совпадают.

Рис. 4. Зависимость объемных долей торфа, воды, кокса, золы от температуры каркаса T_1 , К при t = 10,22 ч.

Рис. 5. Зависимость объемных долей торфа, воды, кокса, золы от температуры каркаса T_1 , К при t = 10,44 ч.

Из результатов статьи [10] и анализа численного решения задачи следует, что с ростом температуры проницаемого фрагмента среды сначала наблюдается прогрев и испарение связанной воды, при этом объемная доля связанной воды при $T_1 \ge 373$ К исчезает, превращаясь в концентрацию паров H_2O [10]. Из рис. 4 видно, что с ростом температуры начинается процесс пиролиза, исчезновение исходного вещества и образование коксика, а в области высокой температуры $T_1 > 380$ К пиролиз исходного реагента сопровождается появлением основной массы паров воды и кокса [10]. Далее продукт пиролиза – кокс при $T_1 > 550$ К начинает выгорать (тлеть) в глубь фрагмента пористой среды с образованием золы в результате экзотермической реакции окисления. Из-за контакта с холодными нижележащими слоями проницаемой среды процесс тепломасссообмена на глубине $x_3 = 0,02$ м происходит медлениее (см. на рис. 4 и 5 кривые 2).

Для входных данных рис. 2 средняя величина скорости тления в глубь реагента составляет $\omega_3 = 2, 2 \cdot 10^{-5}$ м/с, что по порядку величины согласуется с экспериментальными данными [4, 11]. При этом скорость тления торфа в приповерхностных слоях вдоль образца для $x_3 = 0,02$ м $\omega_1 \sim 2 \cdot 10^{-4}$ м/с влево и вправо от центра очага горения $x_1 = x_2 = c_*$ может значительно превышать ω_3 . Это связано с тем, что распространение тления по приповерхностным слоям идет по предварительно нагретому пористому образцу торфа со стороны наземного очага горения. В то же время процесс тления в глубь тела со скоростью ω_3 происходит в контакте с холодными, лежащими ниже, слоями проницаемой среды. Поэтому одним из способов борьбы с торфяными пожарами может быть своевременное удаление поверхностного слоя тлеющего торфа. Следует также отметить, что глубина фронта горения, ограниченного изотермами 650 К (см. прямую линию на рис. 3), согласуется с экспериментальными данными [24].

В результате уменьшения концентрации кислорода $c_{3\rm H}$ с 0,23 до 0,11 и 0,05 время зажигания реагента увеличивается: $t_{*1} = 10,44$ ч, $t_{*2} = 12,18$ ч, $t_{*3} = 17,74$ ч, что обусловлено замедлением скорости тления реагента в результате уменьшения содержания окислителя в порах торфа. Этот результат качественно согласуется с экспериментальными данными [4], где одним из способов борьбы с почвенными пожарами предложен метод, основанный на изоляции очагов горения от окружающего воздуха.

Выводы

1. Дана трехмерная постановка задачи о зажигании слоя торфа с учетом процессов сушки, пиролиза и окисления газообразных и конденсированных продуктов горения и конкретной базы данных.

2. Установлено, что время зажигания и тления торфа определяется начальным содержанием окислителя в порах реагента, процессами сушки, пиролиза, экзотермической реакцией окисления оксида углерода, а также влагосодержанием торфа.

3. Показано, что результаты расчетов по величине скорости тления торфа согласуются с экспериментальными данными [4, 11], а глубина фронта горения согласуется с данными [24].

ЛИТЕРАТУРА

- 1. Гришин А. М. Математические модели лесных пожаров. Томск: Изд-во Том. ун-та, 1981. 277 с.
- 2. Борисов А. А., Борисов Ал. А., Горелик Р. С. и др. Экспериментальное исследование и математическое моделирование торфяных пожаров // Теплофизика лесных пожаров. Новосибирск: Изд-во Ин-та теплофизики СО АН СССР, 1984. С. 5–22.
- Борисов А. А., Киселёв Я. С., Удилов В. П. Кинетические характеристики низкотемпературного горения торфа // Теплофизика лесных пожаров. Новосибирск: Изд-во Ин-та теплофизики СО АН СССР, 1984. С. 23–30.
- 4. *Гундар С. В.* Определение минимальной концентрации кислорода при беспламенном горении почв // Лесное хозяйство. 1976. № 5. С. 53–54.
- 5. Субботин А. Н. Математическое моделирование распространения фронта пожара на торфяниках // Механика реагирующих сред и ее приложения. Новосибирск: Наука, 1989. С. 57–63.
- Субботин А.Н. О некоторых особенностях распространения подземного пожара // ИФЖ. 2003. Т. 76. № 5. С. 159–165.
- 7. Гришин А. М. Общие математические модели лесных и торфяных пожаров и их приложения // Успехи механики. 2002. Т. 1. № 4. С. 41–89.
- Гришин А. М., Якимов А. С., Рейн Г., Симеони А. О физическом и математическом моделировании возникновения и распространения торфяных пожаров // ИФЖ. 2009. Т. 82. № 6. С 1210–1217.
- 9. Гришин А. М., Якимов А. С. Математическое моделирование процесса зажигания торфа // ИФЖ. 2008. Т. 81, № 1. С. 191–199.
- Гришин А. М., Якимов А. С. Математическое моделирование теплофизических процессов при зажигании и тлении торфа // Теплофизика и аэромеханика. 2010. Т. 17. № 1. С. 151–167.

- 11. Гришин А. М., Голованов А. Н., Суков Я. В., Прейс Ю. И. Экспериментальное определение характеристик зажигания и горения торфа // ИФЖ. 2006. Т. 78. № 1. С. 137–142.
- Гришин А.М., Голованов А.Н., Суков Я.В. Экспериментальное определение теплофизических, термокинетических и фильтрационных характеристик торфа // ИФЖ. 2006. Т. 79. № 3. С. 131–135.
- 13. Гришин А. М., Голованов А. Н., Якимов А. С. Сопряженный теплообмен в композиционном материале // ПМТФ. 1991. № 4. С. 141–148.
- 14. Гришин А. М., Фомин В. М. Сопряженные и нестационарные задачи механики реагирующих сред. Новосибирск: Наука, 1984. 319 с.
- Алексеев Б. В., Гришин А. М. Физическая газодинамика реагирующих сред. М.: Высшая школа, 1985. 464 с.
- 16. Щетинков Е. С. Физика горения газов. М.: Наука, 1965. 739.
- Campbell E. C. and Fristrom R. M. Reaction kinetics thermodynamics and transportin the hydrogen bromine system // Chem. Rev. 1958. V. 38. No. 2. P. 173 – 234.
- Основы практической теории горения / под ред. В.В. Померанцева. Л.: Энергия, 1973. 264 с.
- 19. Мищенко К.П., Равдель А.А. Краткий справочник физико-химических величин. Л.: Химия, 1972. 200 с.
- 20. Гришин А.М., Зинченко В.И., Ефимов К.Н. и др. Итерационно-интерполяционный метод и его приложения. Томск: Изд-во Том. ун-та, 2004. 320 с.
- 21. Справочник по торфу / под ред. А.В. Лазарева, С.С. Корчунова. М.: Недра, 1982. 440 с.
- 22. Вукалович М.П., Ривкин С.А., Александров А.А. Таблицы теплофизических свойств воды и водяного пара. М.: Изд-во Стандартов, 1969. 430 с.
- 23. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. Новосибирск: Наука, 1992. 407 с.
- 24. Лобода Е.Л. Экспериментальное исследование глубины фронта горения торфа ИКметода // Фундаментальные и прикладные вопросы механики и процессов управления: Всероссийская научная конференция, посвященная 75-летию со дня рождения академика В.П. Мясникова. 11–17 сент. 2011 г., Владивосток: сб. докл. [Электронный ресурс]. Владивосток: ИАПУ ДВО Ран, 2011. С. 358–361.

Статья поступила 21.09.2011 г.

Loboda E.L., Yakimov A.S. MODELING THE PROCESS OF PEAT IGNITION. A new formulation and numerical solution of a problem on ignition of a layer of peat as a result of action of the center of a local creeping fire is proposed on the basis of mathematical model of a porous reacting environment. It is obtained that ignition of an initial reagent is determined by processes of drying, peat pyrolysis, oxidation reaction of carbon oxide, and moisture content.

Keywords: peat, drying, pyrolysis, ignition, water.

Loboda Egor Leonidovich (Tomsk State University) E-mail: loboda@mail.tsu.ru

Yakimov Anatolii Stepanivich (Tomsk State University) E-mail: yakimovas@mail.ru