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ABSTRACT 

 

The topic of the master's thesis is «Development of the MRI-images analysis 

algorithms based on gradient methods». The object of the study is an MRI-image of the human 

brain. Subject of research: the use of gradient methods to improve the quality of classification of 

MRI-images of the brain. The aim of the master's thesis is to analyze the possibilities of gradient 

methods used in the processing of magnetic resonance imaging data of the brain. 

Tasks of the master's thesis: 

1) study of the principle of operation of MRI and other methods of medical imaging; 

2) creation of an algorithm that allows classifying MRI data of patients with various 

pathologies; 

3) creation of an approach to improve the classification of MRI data and search for 

the most optimal parameters for gradient methods used in this approach. 

In the master's work, the methods of obtaining brain images and their advantages, 

segmentation methods, methods for selecting object boundaries and recognition methods are 

considered. A program for image conversion, image dimensionalization, image analysis and 

classification has been implemented. The results are shown in illustrations and summarized in a 

table. The result of the master's work is a program on the analysis and classification of MRI-

images. 

The work consists of an introduction, three chapters and a conclusion. The total volume 

of the explanatory note is 51 sheets. The explanatory note contains 22 illustrations, 2 tables and 

78 sources and literature used. 

 

  



3 
 

CONTENTS 

 

 

INTRODUCTION................................................................................................................................ 5 

1 Methods of obtaining brain images.................................................................................................. 7 

1.1 Overview of the most common methods of obtaining medical images of the brain ............. 7 

1.2 Magnetic resonance imaging ................................................................................................... 12 

1.3 Presentation of medical data .................................................................................................... 14 

1.4 Methods of image analysis ...................................................................................................... 16 

1.4.1 Segmentation methods ...................................................................................................... 16 

1.4.1.2 Region growing method............................................................................................. 22 

1.4.1.3 Watershed method ...................................................................................................... 24 

1.4.2 Methods for selecting the boundaries of object............................................................... 26 

1.4.3 Multispectral methods ....................................................................................................... 30 

1.4.4 Clustering ........................................................................................................................... 33 

2 Material and methods...................................................................................................................... 34 

2.1 Principal component analysis .................................................................................................. 34 

2.2 Classification of MRI data for two pathologies ..................................................................... 35 

3 Development of approaches for the analysis of MRI data and their classifications ................... 37 

CONCLUSION .................................................................................................................................. 48 

REFERENCES ................................................................................................................................... 49 



4 
 

LIST OF ABBREVIATIONS 

MRI – Magnetic resonance imaging 

CT – Computer tomography 

PET – Positron emission tomography 

kHz – kiloHertz 

EM – ElectroMagnetic 

kg – kilogram 

NMR – Nuclear magnetic resonance 

mm – millimeter 

DICOM – Digital Imaging and Communications in Medicine 

PACS – Picture Archiving and Communication System 

SPET – Single-photon positron emission tomography 

MRA – Magnetic resonance angiography 

ROI – Reference area of interest 

PCA – Principal component analysis 

FLAIR – Fluid attenuation inversion recovery 

CSF – Cerebrospinal fluid 

SVM – Support vector machine 
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INTRODUCTION 

 

 Currently, there are many methods for obtaining medical images. These methods include 

MRI, CT, PET and ultrasonography. They are the most used for the diagnosis of the brain, lungs, 

abdominal cavity, etc. 

 The use of magnetic resonance imaging (MRI) in the field of medicine and the 

emergence of radiology are relatively new compared to classical specialties in medicine. 

 Since its inception, MRI has grown exponentially, leading to the emergence of exciting 

new areas of research. One of these areas is the use of computational methods for analyzing 

MRI-images. 

 In the areas of modern medicine, the field of processing and analysis of visual data is 

actively developing. Computer technology allows more in-depth analysis of medical images such 

as computed tomography and magnetic resonance imaging. 

 Despite the development of modern medical diagnostic equipment, the image that is 

obtained as a result of diagnostics may not always be clear and with high resolution. Because of 

this, the field of processing and analysis of visual medical data is actively developing - computer 

technology that allows you to analyze medical images such as CT, MRI, PET, etc. 

 Due to the huge amount of visualization data obtained during clinical practice, there are 

few specialists engaged in uncontrolled (without a teacher) analysis and classification of medical 

images. 

 To date, there are many methods for analyzing medical images, which facilitate the study 

of the physiology of internal organs and the detection of pathologies. 

 Object of study: MRI-image of the human brain. 

 Subject of study: gradient methods used to improve the quality of classification of MRI-

images of the brain. 

 The purpose of the master's thesis is to analyze the possibilities of gradient methods used 

in the processing of data from magnetic resonance imaging of the brain. 

Tasks of the master's thesis: 

1)        study of the principle of operation of MRI and other methods of medical 

imaging; 

2) creation of an algorithm that allows classifying MRI data of patients with various 

pathologies; 

3) creation of an approach to improve the classification of MRI data and search for 

the most optimal parameters for gradient methods used in this approach. 
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 1 Methods of obtaining brain images 

 1.1 Overview of the most common methods of obtaining medical images of the brain 

  

This chapter is devoted to an overview of physical methods to obtain a medical image. 

The most common methods and well-proven are: MRI, CT, ultrasonography, PET. 

 PET is a radionuclide tomographic method based on the registration of a pair of gamma 

quanta arising from the annihilation of positrons with electrons [1]. 

 Before the study, a radiopharmaceutical is injected into the patient's body, which further 

beta decay of the radionuclide occurs and thereby a positron arises. The positron travels a 

distance before colliding with the electrons of the study environment, then the positron combines 

with the electron. During the unification, the particles destroy each other, i.e., the process of 

annihilation occurs and their mass is transformed into energy, leading to the emission of two 

oppositely directed rays (high-energy photons). The image is formed by moving two detectors 

and registering two gamma quanta by these detectors as a result of positron annihilation. 

 The most commonly used isotope is 2-deoxy-2-[fluoro-18]-fluoro-D-glucose (18-FDG), 

which is a glucose analog in which the hydroxyl group is replaced by fluoro-18. After the 

injected of the radiopharmaceutical, the isotope is captured by the same mechanism as the 

capture of ordinary glucose. However, the capture of the isotope stops at the stage of 

phosphorylation of aerobic glycolysis, the isotope combines with the phosphoric acid residue and 

remains in the cell. 

 The physical limitations imposed on the resolution of PET systems are determined by the 

finiteness of the free path of the positron in the biological tissue, as well as a small deviation of 

the gamma-ray scattering angle from 180°. It is also possible to combine with CT and MRI. 

 Contraindications to PET: 

1) diabetes mellitus; 

2) severe renal failure; 

3) pregnancy. 

 Figure 1 shows an image of the brain obtained by PET. 
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Figure 1– PET image of the human brain 

 The next method based on the interaction of ultrasound with human tissues is 

ultrasonography. Ultrasound is a mechanical vibration and waves, the frequency of which is 

more than 20 kHz. Ultrasound in gases and air, in comparison with liquids and solids, distributed 

with a large attenuation [2]. 

 The basis of the method is the piezoelectric effect. When the single crystals of some 

chemical compounds are deformed under the action of ultrasound waves, electric charges 

opposite in sign appear on the surface of the crystals. When an alternating electric charge is 

applied to them, mechanical vibrations arise in the crystals with the emission of ultrasonic 

waves. Thus, the same piezoelectric element can alternately be a receiver or a source of 

ultrasonic waves. 

 Imaging obtaining divided into two parts: the first is the emission of short ultrasound 

pulses directed into the studied tissues; the second is the registration of reflected signals from 

tissues and organs. 

 Any environment, including body tissues, prevents the spread of ultrasound, i.e. it has 

different acoustic resistance, the value of which depends on their density and the speed of 

distribution of sound waves. 

 Having reached the boundary of two environment with different acoustic resistance, the 

beam of ultrasound waves undergoes significant changes: one part of it continues to propagate in 

a new environment, being absorbed by it to one degree or another, the other is reflected. The 
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reflection coefficient depends on the difference in the values of the sound resistance of the 

tissues bordering each other. 

 Ultrasonography plays an important role in the examination of internal organs, such as: 

the abdominal cavity and pelvis. 

 Conducting brain diagnostics by ultrasonography includes the following limitations: low 

resolution, because the bone structure create interferes or completely excludes conducting 

ultrasound examination and increasing frequency, the penetrating ability or depth of scanning 

turns out to be less. This suggests that ultrasonography is not capable of examining an object at a 

depth of more than 5 cm. 

 Figure 2 shows the result of scanning the brain with an ultrasonography device (an 

ultrasonography diagnostic device). 

 

Figure 2 – Ultrasonography image of the human brain 

 One of the methods based on X-ray irradiation is a computed tomograph. X-rays are EM 

radiation occupying the spectral region between UV and gamma radiation [3]. 

 The source of X-rays is an X-ray tube, in which there are two electrodes - a cathode and 

an anode. When the cathode is heated, electron emission occurs. Electrons flying out of the 

cathode are accelerated by an electric field and hit the surface of the anode. When an electron 

flies out of the cathode, the electric field causes it to fly towards the anode, while its velocity 

continuously increases, the electron carries a magnetic field, the intensity of which increases 

with the electron velocity. Reaching the surface of the anode, the electrons are sharply inhibited, 

and an electromagnetic pulse with wavelengths in a certain interval (braking radiation) occurs. 

 The distribution of the radiation intensity over the wavelengths depends on the anode 
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material and the applied voltage, while on the side of 2 short waves, this curve begins with a 

certain threshold minimum wavelength, depending on the applied voltage. 

 The total power of X-ray radiation is 0.1% of the power consumed, since the rest is spent 

on heat.  

 During X-ray irradiation of the patient, the absorption and scattering of quanta occurs, 

thereby weakening occurs. The degree of weakening varies, because organs and tissues have 

different densities. The X-ray image is based on the uneven absorption of X-ray radiation by 

various anatomical structures, organs and tissues. Absorption depends on the atomic 

composition, density and thickness of the object under study, as well as the radiation energy. To 

the greatest extent, X-ray radiation is absorbed by bones, to a much lesser extent by soft tissues. 

 Conducting diagnostics by computed tomography includes a number of advantages and 

disadvantages: 

1) exposure to ionizing radiation. Currently, a dose of radiation is used that does not 

endanger human life. After the first procedure, a period of time should pass for repeated 

diagnosis. Otherwise, the implementation of repeated diagnostics without a proper break, 

threatens with bad consequences; 

2) absorption of X-rays by solid tissue. These are mainly tissues of considerable density, 

for example: rays are absorbed to a greater extent in bones, to a lesser extent in soft tissues and 

body fluids, to an even lesser extent in fatty tissues and gases. This suggests that during the 

diagnosis of the brain, brain tissue will not be so clearly visible in the image, which in turn 

makes it difficult to recognize the pathology; 

3) the possibility of conducting diagnostics using a contrast agent. A contrast agent is 

used that absorbs radiation more strongly than the organ under study. Examples of such 

substances are barium sulfate, organic iodine compounds and gases.  

 Figure 3 shows an image of a slice of the human brain obtained by computed 

tomography. 
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Figure 3– CT image of the human brain 

 MRI is a method based on the phenomenon of nuclear magnetic resonance, which allows 

to obtain a high-quality image of the soft tissues of the human body [4]. 

 The phenomenon of nuclear magnetic resonance consists in the resonant absorption or 

emission of EM energy by a substance whose nuclei have a non-zero magnetic moment. These 

are the nuclei H1, H2, C13, N14, F19, Na23, P31. 

 Under the influence of the magnetic field B0, the proton spins of hydrogen nuclei change 

their position and are located along the axis of the magnetic field B0. By the action of the 

magnetic field B1 and the radio frequency pulse on the protons of hydrogen nuclei, the proton 

spins are rearranged relative to new axes for a very short period of time, which is accompanied 

by the release of energy. Recording this energy is the basis of an MRI-image. Based on the 

basics of MRI, it can be assumed that it is more informative, especially to soft tissues and does 

not emit ionizing radiation. It is also possible to combine with a gadolinium-based contrast 

agent. 

 The following disadvantages are additionally attributed to MRI: 

1) contraindication of the diagnosis of patients with extraneous and implanted metal 

products or electronic device and the presence of tattoos made with dyes containing a metal 

compound. For example: pacemaker, hemostatic clips, etc; 

2) contraindication of the diagnosis to persons with fever, psychopathological symptom - 

claustrophobia, with a large excess of scales, about 150 kg. 

 Figure 4 shows an image of a slice of the human brain obtained by magnetic resonance 

imaging. 
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Figure 4 – MRI image of the human brain 

 

 1.2 Magnetic resonance imaging 

 

 A magnetic resonance image (MRI) is a slice of the object under study and consists of 

individual plane elements called pixels. A slice consists of individual volume elements or so-

called voxels. The volume of each voxel is approximately 3 mm3. The pixel intensity is 

proportional to the intensity of the NMR signal consisting of the voxels of the displayed object.  

 In NMR tomography, the signal is recorded from resonating nuclei having both spin and 

magnetic moment. Hydrogen protons H1 are most often used. 

 When a proton is placed in an external magnetic field, the spin vector is positioned 

relative to the external field. Spin also has a low-energy N-S-N-S and a high-energy N-N-S-S 

state. But in order to cause a transition between two spin states, a photon must have energy 

 

𝐸 = ℎ𝛾𝐵 (1) 

 

where  ℎ– Planck 's constant, J s; 

 𝛾– gyromagnetic ratio, MHz/T; 

 B – magnetic field voltage, T. 
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 The signal that is recorded during the examination it is obtained from the difference 

between the absorbed energy of the spins in which there was a transition from a lower energy 

level to a higher one and the energy emitted by the spins in which there was a transition from a 

higher level to a lower one. 

 At any time, the magnetic field corresponding to the spins in each group of spins 

experiencing the same magnetic field force can be represented by the magnetization vector. The 

sum of all the magnetization vectors of all spin groups is the total magnetization. To convert to a 

generally accepted NMR coordinate system, the external magnetic field and the magnetization 

vector are directed along the z axis. 

 A change in the total magnetization is possible by exposing the nuclear spin to a 

frequency energy equal to the energy difference between the spin states. If enough energy has 

entered the system, it is possible to saturate the spin system and make Mz=0 [19]. 

 T1 time spin-lattice relaxation is a time constant describing how Mz returns to the 

equilibrium value. This phenomenon is described by an equation that is a function of time t, 

which after the transformation has the form: 

 

𝑀𝑧 = 𝑀0(1 − 2𝑒
−𝑡

𝑇1
⁄ ) (2) 

  

where  𝑀0–equilibrium magnetization; 

 𝑡–time; 

 𝑇1–spin-lattice relaxation; 

 𝑀𝑧–longitudinal magnetization. 

 

 T1 is the time required to reduce the difference between the longitudinal magnetization 

(Mz) and its equilibrium value with a coefficient e. 

 If the total magnetization is located in the XY plane, then it will rotate around the Z axis 

with a frequency that will be equal to the frequency of the photon that causes the transition 

between the two spin energy states. This frequency is called the Larmor frequency [19]. 

 In addition to rotation, there is a phase shift due to the fact that each spin group 

experiences a magnetic field different from the magnetic field experienced by other spin groups. 

The more time passes, the greater the phase difference. 

 The time constant describing the behavior of transverse magnetization Mxy is called the 

spin-spin relaxation time T2 
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𝑀𝑋𝑌 = 𝑀𝑋𝑌0
𝑒

−𝑡
𝑇2

⁄
 (3) 

 

where  𝑀𝑥𝑦–transverse magnetization; 

 𝑡 –time; 

 𝑇2–spin-spin relaxation; 

 𝑀𝑋𝑌0
 –equilibrium magnetization. 

 

 T2 is always less than T1. The total magnetization of the XY axes tends to zero, then the 

longitudinal magnetization increases until M0 is along the Z axis. 

 The contrast of the received images is affected by the time TR (determines the level of 

tissue saturation or the effect of the T1 relaxation process) and the time TE (determines the level 

of dephasing until the echo signal is read or the effect of the T2 relaxation process). 

 

 1.3 Presentation of medical data 

 

 With the development of computer technologies in medicine, it became necessary to 

create unified international standards for the exchange of medical data. There are many different 

medical standards: ASTM, ASC X12, IEEE/MEDIX, NCPDP, HL7, DICOM, etc. Currently, the 

main medical communication standard for image transmission is DICOM [5]. 

 DICOM (Digital Imaging and Communications in Medicine, Digital Images and their 

Exchange in Medicine) is a standard for transferring images and other medical information 

between computers, based on the Open System Interconnection (OSI) standard developed by the 

International Standards Organization. DICOM can be used in network environments using 

standard protocols, for example TCP/IP [6]. 

 The standard has a technology for the unique identification of any information object 

during network interaction, applies image compression according to the JPEG standard. Having 

appeared as a corporate, DICOM has become a de facto standard and is integrated into the 

equipment of the largest manufacturers of radiological equipment and most PACS systems [5]. 

 The file storing one image in the DICOM standard includes not only the image but also 

some information: data about the equipment on which the study was conducted; a description of 

the study; parameters and description of the series; coordinate systems associated with the 

image; attributes defining the image itself; text and graphic elements, graphs and comments 

performed by medical personnel and attributes describing the transformation over the received 
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data, etc. A separate DICOM file contains both the header (which stores information about the 

patient's name, type of study, image size, etc.) and all image data (which can contain information 

in three dimensions). Another difference of DICOM is that DICOM image data can be 

compressed to reduce the image size, resulting in data loss.  

 The element defining the transfer syntax is important. It talks about the data structure of 

the image, showing whether the data has been compressed. DICOM images can be compressed 

as a regular JPEG lossy scheme (where some of the high-frequency information is lost) and 

without losses. 

 In medical imaging, they usually talk about the center of the window (window level, L) 

and the width of the window (window width, W) of the image. The window level is called some 

central value of the pixel intensities of the image. As a rule, by default, some average intensity 

value is set for the entire image dataset being processed. The width of the window allows you to 

set the range of pixel intensities of the image relative to the selected window level. All pixels 

whose intensity is less than the lower border of the selected window are assigned a zero value 

(black in the image), and all pixels whose intensity is greater than the upper border are assigned 

the maximum intensity (bright in the image). Selecting the width of the window allows you to 

stretch the tones of the image to the full range of brightness. 

 In magnetic resonance imaging, the contrast of images is relative and depends on the 

specific object under study and the type of image. Therefore, the selected level and width of the 

window, which is the best for one protocol, probably will not be suitable for another research 

protocol or another device. 

 The creation of a modern medical information system designed for several hundred 

automated workplaces is a multifaceted task, including: 

1) building the necessary data transmission infrastructure; 

2) purchase and installation of computer equipment and system software; 

3) acquisition, modernization and development of application software; 

4) training of personnel of computing centers; 

5) ensuring the implementation of a medical information system; 

6) maintenance and operation of the implemented system. 

 Medical images are divided into two main classes: linear images (for example, 

cardiograms), typical for functional diagnostics, and raster images (for example, radiographs), 

typical for radiation diagnostics. Linear images are often transmitted from the appropriate 

specialized system to the clinical information system. The transfer of raster images to the clinical 

information system is most often not practiced. To view and process such images, clinicians 

usually get the opportunity to directly connect via a computer network with a specialized system. 
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Currently, the complex processing of raster medical images is carried out by the systems of 

integration of radiation diagnostics (Computer Integrated Radiology SILD), which are integral 

components of the medical information system. Systems for archiving and transmitting medical 

images or PACS (Picture Archiving and Communication System) - refers to the technical 

implementation and is part of the SILD. SILD allows you to combine both intermediate and final 

research results into a single whole, allowing you to reconstruct 2D and 3D images and combine 

images obtained using different visualization devices. 

 The digital representation of images by modern diagnostic devices allows them to be 

integrated into the hospital computer network [8]. 

PACS system provides storage of a large amount of information, fast access, efficient processing 

of information.  

 Any PACS system consists of an image acquisition subsystem, a distributed database 

(archive server), a computer network for data transmission and workstations for image 

processing. 

 

 1.4 Methods of image analysis 

 

 One of the most informative modalities in the diagnosis of tumor is magnetic resonance 

imaging (MRI). An important feature of MRI is the ability to obtain images of an object with 

high spatial resolution and high tissue contrast. Due to the huge amount of imaging data obtained 

during clinical practice, researchers are paying special attention to the use of image analysis to 

improve existing standards for detecting tumors and gain a new understanding of the nature of 

the disease.   

 Currently, there are and apply various methods of analysis based on changing the 

brightness of pixels, separating the analyzed object, comparing and combining images, data 

reduction, contrast control. An example of such analysis methods: gradient method, 

segmentation method, clustering, etc. 

 

 1.4.1 Segmentation methods 

 

 Segmentation is a method of image analysis, the purpose of which is to separate the 

analyzed object, structure or area of interest from the surrounding background. Segmentation is 

an important tool in medical image processing, and it has been useful in many applications. 

Applications include detection of the coronary border on angiograms, quantitative assessment of 

multiple sclerosis lesion, surgery modeling, surgery planning, measurement of tumor volume and 
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its response to therapy, functional mapping, automatic classification of blood cells, study of 

brain development, detection of microcalcinates on mammograms, image registration, atlas 

comparison, heart analysis, extraction of images from cardioangiograms, detection of tumors, 

etc. 

 Segmentation methods can be divided into classes in different ways, depending on the 

classification scheme: 

 manual, semi-automatic and automatic; 

 pixel-based (local methods) and region-based (global methods); 

 manual differentiation, low-level segmentation (threshold value, area magnification, 

etc.) and model-based segmentation (multispectral or spatial map methods, dynamic 

programming, contour tracking, etc.); 

 classical (threshold, boundary and regional methods), static, fuzzy and neural network 

methods. 

The most commonly used segmentation methods can be divided into two broad 

categories: (1) region segmentation methods that search for regions that meet a given uniformity 

criterion, and (2) boundary-based segmentation methods that search for boundaries between 

regions with different characteristics. 

The thresholding method is a common method of segmentation of regions [9, 21]. In this 

method, a threshold is selected and the image is divided into groups of pixels whose values are 

less than the threshold value and groups of pixels whose values are greater than or equal to the 

threshold value [8,9].  There are several threshold value methods: global methods based on gray 

level histograms, global methods based on local properties, local threshold selection and 

dynamic threshold value. Clustering algorithms provide segmentation of the area [29, 30, 31, 32] 

by splitting the image into sets or clusters of pixels that have a strong similarity in the object 

space. The basic operation is to examine each pixel and assign it to the cluster that best 

represents the value of its characteristic vector of the objects of interest. 

Region growing is another class of area segmentation algorithms that assign neighboring 

pixels or regions to the same segment if their image values are close enough, according to some 

pre-selected proximity criterion [33, 34]. 

 The strategy of boundary-based segmentation algorithms is to find the boundaries of the 

object and segment the areas bounded by the boundaries [40, 37, 43, 35, 39, 44]. These 

algorithms usually work with edge magnitude and/or phase images created by an edge operator 

suitable for the expected image characteristics. For example, most gradient operators, such as the 

Pruitt, Kirsch, or Roberts operators, are based on the existence of an ideal stepped edge. Other 

edge-based segmentation methods are graph search and contour tracking [41, 36, 38]. 
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 Traditionally, most image segmentation methods use a single image type (MRI, CT, PET, 

SPECT, ultrasonography, etc.). However, the performance of these methods can be improved by 

combining images from multiple sources (multispectral segmentation [42]) or integrating images 

over time (dynamic or time segmentation [50]). 

 

1.4.1.1 Threshold segmentation method 

 

 Several methods for determining threshold values have been developed [40, 49, 37, 43, 

64, 44]. Some are based on the histogram of the image, others are based on local properties such 

as local mean and standard deviation or local gradient. The most intuitive approach is a global 

threshold value. The threshold method is called global if only one threshold is selected for the 

entire image based on the image histogram. If the threshold depends on the local properties of 

some areas of the image, for example, the local average value of the gray level of a pixel, the 

threshold value is called local. If local thresholds are selected independently for each pixel (or 

groups of pixels), the threshold value is called dynamic or adaptive. 

Global threshold value 

 Global threshold processing is based on the assumption that the image has a bimodal 

histogram and, therefore, the object can be extracted from the background using a simple 

operation that compares the image values with the threshold value T [41]. Suppose we have an 

image f(x,y) with the histogram shown in Figure 5. 

 

Figure 5 – Example of a bimodal histogram with a selected threshold T 
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 The pixels of the object and background have gray levels grouped into two dominant 

modes. One of the obvious ways to highlight an object from the background is to select a 

threshold T separating these modes. The threshold image g(x,y) is defined as 

 

𝑔(𝑥, 𝑦) = {
1 𝑖𝑓 (𝑥, 𝑦) > 𝑇
0 𝑖𝑓 (𝑥, 𝑦) ≤ 𝑇

, (4) 

 

where  g(x,y) – threshold value; 

            T – threshold level. 

 

 The result of threshold processing is a binary image, where pixels with an intensity value 

of 1 correspond to objects, and pixels with a value of 0 correspond to the background. 

 There are many other ways to choose a global threshold. One of them is based on a 

classification model that minimizes the probability of error [33]. For example, if we have an 

image with a bimodal histogram (for example, an object and a background), we can calculate the 

error as the total number of background pixels mistakenly classified as an object and object 

pixels mistakenly classified as a background. 

 A semi-automated version of this technique was applied by Johnson et al. [46] to measure 

ventricular volumes from 3D MRI-images. In their method, the operator selects two pixels - one 

inside the object and one in the background. When comparing the distribution of pixel intensities 

in circular areas around the selected pixels, a threshold value is automatically calculated and it 

corresponds to the smallest number of misclassified pixels between the two distributions.  

 The result of the threshold value operation is displayed as a contour map and 

superimposed on the original image. 

 If necessary, the operator can manually change any part of the border. The same method 

has also been applied to extract lymph nodes from CT scan images and has been found to be 

very sensitive to the user's placement of internal and external points. 
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(a) cross-sectional intensity profile of a bright object against a dark background with three 

threshold levels T1, T2 and T3 and three other levels obtained by adding a small value of ∆T; (b) 

Hypothetical plot of area (A) or perimeter (P) versus threshold T. 

Figure 6 – Example of threshold selection sensitivity 

 In many applications, appropriate segmentation is achieved when the area or perimeter of 

objects is minimally sensitive to small changes in the selected threshold level. Figure 6a shows 

the intensity profile of an object that is brighter than the background and three threshold levels 

for segmentation: T1, T2 and T3.A small change in ∆T at the lowest threshold level will result in 

a significant change in the area or perimeter of the segmented object. The same is true for the 

highest threshold level. However, a change in ∆T at an average level will have a minimal effect 

on the area or perimeter of the object. The area of the object A(T) and the perimeter P(T) are 

functions of the threshold T, which often show the trend shown in Figure 6b. 

 Therefore, a threshold level that minimizes either dA(T)/dT or dP(T)/dT is often a good 

choice, especially in the absence of operator guidance and when prior information about the 

object's location is not available. 

 The average value of the gradient is determined by the formula 

 

𝐺̅ = lim
∆𝑇→0

∆𝑇 × 𝑃(𝑇)

∆𝐴
=

𝑃(𝑇)

𝐻(𝑇)
, (5) 

 

where  H(T) – function of histogram. A threshold value is selected that maximizes the average 

boundary gradient; 

 P(T) – perimeter of object; 

 ∆А– area change; 

 ∆Т– threshold change. 
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 If an image contains more than two types of regions, it can still be segmented by applying 

several separate thresholds [44] or using the multitasking method [47].  

 As the number of areas increases, the histogram modes become more difficult to 

distinguish, and the selection of the threshold becomes more difficult. 

 The global threshold value is simple and fast to calculate. It works well on images 

containing objects with the same intensity values on a contrasting background. However, it fails 

if is low contrast between the object and the background, if the image is noisy, or the background 

intensity varies significantly all over the image. 

Local (Adaptive) Threshold 

 In many applications, the global threshold cannot be found from the histogram, or a 

single threshold cannot give good segmentation results across the entire image. For example, 

when the background is not constant and the contrast of objects varies throughout the image, 

thresholding may work well in one part of the image, but may not work well in other areas.  If 

background changes can be described by some known position function in the image, one can try 

to correct this using gray level correction methods, after which a single threshold should work 

for the entire image. Another solution is to use a local (adaptive) threshold [41, 49, 43]. 

 Local thresholds can be determined by: (1) dividing the image into sub-images and 

calculating threshold values for each sub-image, or by (2) examining the intensity of the image 

in the vicinity of each pixel. In the first method [48], the image is first divided into rectangular 

overlapping image fragments, and histograms are calculated for each image fragment. The image 

fragments used must be large enough to include both object and background pixels. If the image 

fragment has a bimodal histogram, then the minimum between the peaks of the histogram should 

determine the local threshold. If the histogram is unimodal, the threshold can be assigned by 

interpolating from the local threshold values found for the nearest image fragments. At the last 

stage, a second interpolation is needed to find the correct thresholds for each pixel. 

 In the latter method, the threshold can be chosen using the average value of the local 

intensity distribution. Sometimes other statistics data  can be used, such as the mean value plus 

the standard deviation, the average value of the maximum and minimum values [40, 49] or 

statistics based on the magnitude of the local intensity gradient [49]. 
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 1.4.1.2 Region growing method 

 

 Region growing method is a contextual form of segmentation that takes into account the 

distance of pixels to the current area. Region growth algorithms are considered classical methods 

that form the basis for complex permutations of region growing methods.  

 While the threshold method focuses on the difference in pixel intensities, the region 

growth method looks for groups of pixels with the same intensity. Region growth, also called 

region pooling, starts with a pixel or group of pixels (called seeds) that belong to the structure of 

interest. Seeds can be selected by the operator or provided through an automatic seed search 

procedure. In the next step, neighboring pixels are tested one at a time and added to the growth 

area if they are sufficiently similar based on a uniformity test (also called a uniformity criterion). 

The procedure continues until the pixels stop being added. Then the object is represented by all 

the pixels that were taken during the zoom procedure. 

 One example of a uniformity test is to compare the difference between the pixel intensity 

value and the average intensity value an area. If the difference is less than a given value, for 

example, two standard deviations of intensity over the entire area, then the pixel is included in 

the area, otherwise it is defined as a boundary pixel. 

 The results of the method strongly depend on the choice of the uniformity criterion. If it 

is not selected correctly, the areas leak into adjacent areas or merge with areas that do not belong 

to the object of interest. Another problem with the method of growing regions is that different 

starting points may not turn into the same regions. The advantage of the region growth method is 

that they are able to correctly segment areas that have the same properties. Another advantage is 

that it generates connected regions. 

 Instead of combining regions, can start with some initial segmentation and divide the 

regions that do not meet the specified uniformity criterion. This method is called splitting [43, 

44]. The combination of separation and fusion combines the advantages of both approaches [41]. 

 Various approaches to segmentation of the growing region were described by Zucker 

[70]. Excellent reviews of regional cultivation methods were made by Fu and Mui [71], Haralik 

and Shapiro [43], as well as Rosenfeld and Kak [44]. 

 An interesting modification of the region growth technique called hill climbing was 

proposed by Bankman et al. to detect microcalcifications on mammograms [14]. This method is 

based on the fact that in a given image f(x, y), the microcalcification edge to be segmented is a 

closed loop around a known pixel (x0, y0), a local intensity maximum. For each pixel, the slope 

value s(x, y) is defined as 
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𝑠(𝑥, 𝑦) =
𝑓(𝑥0, 𝑦0) − 𝑓(𝑥, 𝑦)

𝑑(𝑥0, 𝑦0 , 𝑥, 𝑦)
, (6) 

 

where  𝑑(𝑥0, 𝑦0 , 𝑥, 𝑦)–Euclidean distance between the local maximum pixel and the (x,y) pixel; 

 f(x,y)– image; 

 f(x0,y0)–image of the selected object. 

 

 

(a) 0.5×0.5 mm image showing fine microcalcifications; (b) 16 edge points determined by the 

algorithm, (c) the result of the growth of the area; (g) the edges of the area covering the 

segmented microcalcification[14]. 

Figure 7 – Segmentation stages using the hill climbing algorithm  

 At the first stage, the edge points of the object are identified by searching for a radial line 

originating from the local maximum. Linear search is applied in 16 equally spaced directions 

emanating from the pixel (x0, y0), and for each direction, the pixel is considered to be on the edge 

if it provides the maximum slope value. Then the edge points are used as starting points for the 

growth of the area with a spatial restriction (the growth of the area inward, to the local 

maximum) and intensity restriction (including pixels with intensity values monotonically 

increasing to the local maximum). Figure 7 shows the segmentation stages using the hill 

climbing algorithm. The advantages of this algorithm are that it does not require the selection of 

a threshold and, since it increases the area from the edges to the center, it avoids excessive 

growth of the area. 
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 The increase in the area has found many other medical applications, such as segmentation 

of the ventricles in images of the heart, extraction of blood vessels according to angiography, 

segmentation of the kidneys or extraction of the brain surface [36]. 

 

 1.4.1.3 Watershed method 

 

 The watershed method is a regional method using image morphology. This requires 

selecting at least one marker (the "starting" point) inside each image object, including the 

background as a separate object. Markers are selected by the operator or provided using an 

automatic procedure that takes into account the knowledge of objects specific to a particular 

application. Once the objects are marked, they can be grown using morphological transformation 

of the watershed [40]. 

 To understand the watershed, can be think of an image as a surface where bright pixels 

represent mountain peaks and dark pixels represent valleys. The surface is pierced in some 

valleys, and then slowly immersed in a water bath. Water will pour into each puncture and begin 

to fill the depressions. However, water from different punctures is not allowed to mix, and 

therefore dams must be built in places of first contact. 

 These dams are the boundaries of water basins, as well as the boundaries of image 

objects. 

 The use of watershed segmentation to isolate lymph nodes in computed tomography 

images is shown in Figure 8. In this implementation, the Sobel edge operator 3 × 3 [37, 44] is 

used instead of a morphological gradient to extract the edge strength. 
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(a) The original image of the lymph node; (b) operator marks: a point inside a node and a circle 

enclosing an area well outside the node; (c) a binary image generated from (b); (d) the result of a 

3 × 3 Sobel edge detection operation performed on the original image (a); (e) the result of a 

watershed algorithm performed on image (d) using markers from image (c); (f) the edges of the 

lymph node [inner area from the image (e)] superimposed on the original image[74]. 

Figure 8 – Image segmentation using the Sobel algorithm/watershed 

 The original image of the lymph node is shown in Figure 8a. In the first step, the operator 

places the cursor inside the node in Figure 8b. All pixels within a two-pixel radius of the 

placemark are used as starting points for the lymph node. To mark the outer part of the lymph 

node, the operator moves the cursor outside the node to define a circular area that completely 

covers the node in Figure 8c. All pixels outside of this circle represent the background. 

 In the next step, the edge image is created using the Sobel operator (Figure 8d). An edged 

image has high values for pixels with sharp edges. With a starting point denoting the inside of 

the node, a circle denoting the background, Figure 8c, and an edge image generated by the Sobel 

operator, Figure 8d, segmentation is performed directly using the watershed operation, Figure 8e. 

The "Watershed" operation is performed on the edge image to separate the lymph node from the 

surrounding tissue. 

 Using a technique called immersion simulation [75], the watershed takes into account 

whether a drop of water at each point of the edge image will flow to the inner starting point or to 
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the outer marker. The points that drain inwards belong to the lymph node, while the points that 

drain outwards belong to the surrounding tissue. 

 Watershed analysis has proven to be a powerful tool for many applications of 2D image 

segmentation [52]. 

 Higgins and Ojard [51] applied a 3D extension of the watershed algorithm to 3D cardiac 

images. Grau et al. combined watershed transformation and atlas registration using markers and 

applied this technique to knee cartilage and gray matter/white matter segmentation in MR-

images [55]. Marker-controlled watershed segmentation has also been successfully applied to 

detect lymph nodes on CT-images [54]. Gulsrud et al. used the watershed method to segment 

detected lesions on digital mammograms [52]. 

 

 1.4.2 Methods for selecting the boundaries of object 

 

 The edge or border of an image is defined by a local pixel intensity gradient. A gradient 

is an approximation of the first order derivative of an image function. For a given image f(x, y) 

we can compute the magnitude of the gradient as 

 

|𝐺| = √[𝐺𝑥
2 + 𝐺𝑦

2] = √[(
𝜕𝑓

𝜕𝑥
)

2
+ (

𝜕𝑓

𝜕𝑦
)

2
], (7) 

 

where  Gx–gradient in x direction; 

 Gy– gradient in y direction. 

 

and the direction of the gradient in the form 

 

𝐷 = 𝑡𝑎𝑛−1 (
𝐺𝑥

𝐺𝑦

), (8) 

 

where  Gx–gradient in x direction; 

 Gy– gradient in y direction. 

 

 Since the discrete nature of digital images does not allow for the direct application of 

continuous differentiation, the gradient calculation is performed by differentiation [37]. 

 The magnitude image will have gray levels that are proportional to the magnitude of the 

local intensity changes, while the direction image will have gray levels representing the direction 
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of the maximum local gradient in the original image. Most gradient operators in digital images 

involve the calculation of convolution, for example, weighted summation of pixel intensities in 

local neighborhoods. Weights can be listed as a numeric array in a form corresponding to the 

local neighborhood of the image (also known as a mask, window, or kernel). 

 

(a) An initial angiographic image showing blood vessels, (b) an image of the edge size obtained 

using a 3 × 3 Sobel mask, (c) an image of an edge with a threshold value with a low threshold (T 

= 300), (d) an image of an edge with a threshold value with a high threshold (T = 600) [53,76]. 

Figure 9 – Defining boundaries using the Sobel operator. 

 An image of the gradient magnitude is generated by combining Gx and Gy using Equation 

7. Figure 9b shows an image of the edge magnitude obtained using the 3×3 Sobel  operator 

applied to the magnetic resonance angiography (MRA) image in Figure 9a. 

 The results of edge detection depend on the gradient mask. Some of the other border 

operators are Roberts, Pruitt, Robinson, Kirsch and Freichen [37, 43, 44]. 

 Many edge detection methods use a gradient operator followed by a threshold operation 

on the gradient to determine if an edge has been found [50, 48, 49, 43, 57, 53, 44]. As a result, 

the output is a binary image indicating where the edges are. Figures 9c and 9d show the results of 

the threshold value at two different levels. 
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 A combination of vertical gradient and Sobel edge detection with adaptive filtering was 

used by Rogowska et al. to detect cartilage edges in optical coherence tomography images [53]. 

 Edge-based methods are computationally fast and do not require a priori information 

about the image content. A common problem with edge-based segmentation is that often the 

edges do not cover the object completely. To form closed boundaries surrounding the regions, a 

post-processing stage is required for linking or grouping edges that correspond to a single 

boundary. The simplest approach to edge binding involves examining pixels in a small 

neighborhood of an edge pixel (3×3, 5×5, etc.) and associating pixels with a similar edge size 

and/or edge direction. In general, binding boundaries is computationally expensive and not very 

reliable. One solution is to make edge snapping semi-automatic and allow the user to draw edges 

when the automatic tracing becomes ambiguous. For example, Wang et al. We have developed a 

hybrid algorithm (for MR-syneangiography of the heart) in which a human operator interacts 

with the edge tracing operation, using anatomical knowledge to correct errors [56]. 

 The graph search method for detecting boundaries has been used in many medical 

applications [41, 36, 39, 38]. In this method, each pixel of the image corresponds to a node of the 

graph, and each path in the graph corresponds to a possible edge of the image. Each node has a 

cost associated with it, which is usually calculated using the magnitude of the local edge, the 

direction of the edge, and a priori knowledge of the shape or location of the boundary. 

 The cost of a graph path is the sum of the costs of all nodes included in the path. By 

finding the optimal inexpensive path on the graph, possible determine the optimal boundary. 

 The graph search method is very powerful, but it strongly depends on the cost function 

specific to a particular application. 

 Since the peaks in the first-order derivative correspond to zeros in the second-order 

derivative, the Laplace operator (which approximates the second-order derivative) can also be 

used to detect edges [40, 37, 44]. 

 The Laplace operator ∇2 of the function f(x,y) is defined as 

 

∇2𝑓(𝑥, 𝑦) =
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
; (9) 

 

where  ∇2–Laplace operator; 

 f(x,y) –image. 

 

 Laplace is approximated in digital images by the convolution mask N by N [44]. 
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(a) a 3×3 Laplace image, (b) a 7×7 Gaussian smoothing result followed by a 7×7 Laplacian, (c) a 

zero crossing of the Laplacian image (a), (d) zeroing of the log image (b)[57]. 

Figure 10 – Results of the Laplace and Laplace-Gauss operator applied to the original image 

shown in Figure 9a 

 The edges of the image can be found by finding pixels in which the Laplacian makes a 

transition through zero (zero intersections). Figure 10a shows the result of calculating the 3×3 

Laplacian applied to the image in Figure 9a.The zero intersections of the Laplacian are shown in 

Figure 10c. All boundary detection methods based on gradient or Laplacian are very sensitive to 

noise. In some applications, noise effects can be reduced by smoothing the image before 

applying the crop operation. Mar and Hildreth [57] proposed smoothing the image using a 

Gaussian filter before applying the Laplacian (this operation is called the Gaussian Laplacian, 

Log). 

 Figure 10b shows the result of a 7×7 Gaussian followed by a 7×7 Laplacian applied to the 

original image in Figure 9a. The intersections of the zeros of the registration operator are shown 

in Figure 10d. 
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 1.4.3 Multispectral methods 

 

Most traditional segmentation methods use images that represent only one type of data, 

such as MRI or CT. If different images of the same object are obtained using multiple imaging 

techniques, such as CT, MRI, PET, ultrasonography, or image acquisition over time, they can 

provide different characteristics of the objects, and this spectrum of features can be used for 

segmentation. 

Segmentation methods based on combining information from several images are called 

multispectral or multimodal [58, 42]. 

Segmentation using multiple Images obtained using different Visualization Methods 

In the case of a single image, pixel classification is based on a single object (gray level), 

and segmentation is performed in a one-dimensional (single-channel) object space. In 

multispectral images, each pixel is characterized by a set of features, and segmentation can be 

performed in a multidimensional (multichannel) feature space using clustering algorithms. For 

example, if MR-images were collected using T1, T2 and a proton density imaging protocol, a 

relative multispectral data set for each class of tissues leads to the formation of tissue clusters in 

the three-dimensional space of objects. The simplest approach is to construct a 3D scattering 

diagram, where the three axes represent pixel intensities for images T1, T2 and proton densities. 

Clusters on such a scattering diagram can be analyzed, and segmentation rules for different 

tissues can be determined using automatic or semi-automatic methods [58]. 

 There are many segmentation methods used in multimodal images. Some of them are k-

nearest neighbors (kNN) [60], k-means [72], fuzzy c-means [50], artificial network algorithms 

[59], mathematical expectation/maximization [61] and adaptive template moderated spatially 

varying statistical classification methods [62]. All multispectral methods require proper image 

registration. To reduce noise and improve the performance of segmentation methods, images can 

be smoothed. Excellent results were obtained using adaptive filtering, such as Bayesian 

processing, nonlinear anisotropic diffusion filtering and filtering using wavelet transformations 

[63]. 

 Adaptive segmentation is a generalization of the standard intensity-based classification, 

which, in addition to the usual models of conditional intensity of a class of tissues, includes 

models of inhomogeneities of intra- and interscanning intensity that usually occur in images. The 

algorithm is an iterative algorithm that alternates the traditional statistical classification of tissues 

(step “E”) and the re-evaluation of the correction for unknown intensity heterogeneity (step 

“M"). 
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 The "E", "M" approach can be motivated by the following observations. If an improved 

intensity correction is available, it is simple to apply it to the intensity data and get an improved 

classification. Similarly, if an improved classification is available, it can be used to obtain an 

improved intensity correction, for example, by predicting the intensity of an image based on a 

tissue class, comparing predicted intensities with observed intensities, and smoothing. 

Eventually, the process converges, usually in less than 20 iterations, and gives classification and 

intensity correction. 

 The algorithm "E", "M" has been expanded in a number of ways. Spline-based modeling 

of intensity artifacts associated with surface coils has been described by Gilles et al. [44]. The 

addition of an “unknown” class of fabrics and other improvements were described by 

Guillemaud and Brady [64]. 

 In addition, Markov models of tissue uniformity were added to the formalism to reduce 

thermal noise, which is usually manifested in MRI-images. Held et al. [60] used the method of 

iterative conditional modes to solve the resulting combinatorial optimization problem, while 

Kapoor et al. [65] used mean field methods to solve the related continuous optimization problem. 

Segmentation using multiple images obtained over time 

 Multispectral images can also be obtained as a sequence of images in which the intensity 

of certain objects changes over time, but the anatomical structures remain stationary. One 

example of such a sequence is a series of computed tomography images obtained after 

intravenous injection of a contrast agent that is transferred to the organ of interest. Such a 

sequence of images has a constant morphology of the depicted structure, but regional intensity 

values may vary from one image to another depending on the local pharmacokinetics of the 

contrast agent. 

 The most popular segmentation method using both intensity information and temporal 

information contained in image sequences is the parametric analysis method [66]. 

 In this method, for each pixel or area of interest, the intensity is displayed depending on 

the time. Next, the graphs are analyzed under the assumption that the curves have similar time 

characteristics. 

 Certain parameters are selected, such as the maximum or minimum intensity, the distance 

between the maximum and minimum, or the time of occurrence of the maximum or minimum. 

The corresponding set of parameters depends on the functional characteristics of the object under 

study. Then an image is calculated for each of the selected parameters. In such images, the value 

of each pixel is made equal to the value of the parameter at this point. 

 Therefore, this method is called parametric visualization. The disadvantage of the 

parametric analysis method is that it assumes that all pixel intensity sequence graphs have the 
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same general pattern throughout the image. In fact, however, many images have pixels or regions 

of pixels that do not have the same characteristics in the time domain and therefore will have 

different dynamic intensity graphs. 

 An interesting application of the parametric mapping method for 3D segmentation of 

multiple sclerosis foci on a series of MRI-images was proposed by Gerig et al. [67]. Temporary 

images were obtained at intervals of 1, 2 or 4 weeks for 1 year. The parameters selected for 

parametric maps were based on the characteristics of the lesion, such as the dispersion of the 

intensity of the lesion, the time of appearance and the time of disappearance. 

 3D maps showed samples of lesions that demonstrate similar temporal dynamics. 

Another method of time segmentation was introduced by Rogowska [68]. The correlation 

mapping method (also called similarity mapping) identifies regions (or objects) according to 

their temporal similarity or difference with respect to the reference time intensity curve obtained 

from the reference area of interest (ROI). Suppose we have a sequence of N spatially recorded 

temporal images of stationary structures. The NCORij similarity map based on normalized 

correlation is defined for each pixel (i,j) as 

 

𝑁𝐶𝑂𝑅𝑖𝑗 =
∑ (𝐴𝑖𝑗[𝑛] − 𝜇𝐴)𝑁

𝑛=1 (𝑅[𝑛] − 𝜇𝑅)

√∑ (𝐴𝑖𝑗[𝑛] − 𝜇𝐴)𝑁
𝑛=1

2
∑ (𝑅[𝑛] − 𝜇𝑅)𝑁

𝑛=1
2

, 
(10) 

 

where  Aij[n]– time sequence of image intensity values for consecutive N images: Aij[1], Aij[2], . 

. . , Aij[N], (i = 1, 2, . . . , I , j = 1, 2, . . . , J , n = 1, 2, . . . ,N;  

 I –number of image lines; 

 J –number of image columns; 

 R[n]–reference sequence of average intensity values from the selected reference ROI; 

 µA–the average value of the time sequence for pixel (i,j); 

 μR–the average value of the reference sequence. 

 

 Pixels on the resulting similarity map, whose time sequence is similar to the reference 

one, have high correlation values and are bright, while pixels with low correlation values are 

dark. Thus, similarity mapping segments structures in a sequence of images based on their 

temporal characteristics rather than spatial properties. In addition, similarity maps can be 

displayed in pseudo-color or color coding and superimposed on a single image. 

 Other researchers have used this method in studies of brain activation [69], segmentation 

of breast tumors [50] and kidney pathologies. 
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 A modification of the correlation mapping method, called delay mapping, is also used to 

segment time sequences of images. It segments the image into areas with different time delays, 

which are calculated relative to the reference. 

 Parametric maps, similarity maps, and delay maps are all tools for segmentation and 

visualization of time sequences of images. They are especially useful for evaluating disease 

processes, drug treatment, or the results of radiation therapy. 

 

 1.4.4 Clustering 

 

 Clustering is the organization of data with high intracluster similarity and low intercluster 

similarity. To find the similarity or dissimilarity between two data points, that is, the distance 

between the pixels of the image is calculated. This distance can be the brightness difference 

between two pixels. The most commonly used clustering methods are: k-means [24]. 

 The clustering method means splitting an image into separate areas in order to determine 

the textures on these images. Cluster analysis is a set of mathematical methods designed to form 

groups of objects that are relatively distant from each other based on information about distances 

or connections between them. 

 The most common clustering algorithm is k-means. This method is an iterative method 

for splitting an image into k number of clusters, and each cluster has a distinct, unknown 

intensity value, called the average value of the cluster, denoted by µ i, i=1,...,k. The action of the 

algorithm is such that it seeks to minimize the total quadratic deviation of cluster points from the 

centers of these clusters [25]: 

 

𝑚𝑖𝑛 [∑ ∑ (𝑥 − 𝜇𝑖)2

𝑥∈𝑆𝑖

𝑘

𝑖=1
], (11) 

 

where  k – number of clusters; 

 Si –the resulting clusters; 

 µi–cluster centers, i=1,...,k. 
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 2 Material and methods 

 2.1 Principal component analysis 

 

 The Principal component analysis (PCA) is a basic approach used in chemometrics to 

solve a variety of problems, one of the ways to reduce the dimension of data by losing the least 

amount of data. It is used in the fields of econometrics, bioinformatics, image processing, for 

data compression in the social sciences [45]. 

 The principal component analysis is applied to data written in the form of an X matrix 

with dimensions of I rows and J columns. The rows of the matrix are called samples and 

numbered by index i=1,...,I. The columns are called variables and numbered by index j=1,...,J.  

 The goal of the PCA is to: 

 extracting the most important information; 

 reducing the size of the data set by saving the necessary information. 

 To achieve these goals, the original matrix is replaced by two new matrices T and P, the 

dimension of which, A, is less than the number of variables J in the original matrix. 

 The second dimension - the number of samples I is preserved. If the decomposition is 

done correctly - the dimension of the matrices, A, is chosen correctly, then the matrix T carries 

as much information as it had at the beginning, in the original matrix. 

Formal description 

The principal component analysis uses new, formal variables ta(a=1,...A), which are a linear 

combination of the original variables xj(j=1,...,J) 

 

𝑡𝑎 = 𝑝𝑎1𝑥1+. . +𝑝𝑎𝑗𝑥𝑗, (12) 

 

where  𝑡𝑎– new variables; 

 𝑝𝑎𝑗𝑥𝑗 – source variables; 

 

𝑋 = 𝑇𝑃𝑡 + 𝐸 = ∑ 𝑡𝑎𝑝𝑎
𝑡 + 𝐸

𝐴

𝑎=1

, (13) 

 

where  T– matrix of accounts with dimension (IxA); 

 P–load matrix with dimension (JxA); 

 Е– matrix of residuals with dimension (IxJ). 
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 The new variables ta are called the principal components. The number of columns ta in the 

matrix T, and 𝑝𝑎  in the matrix P, is equal to A, which is called the number of principal 

components. 

 An important property of the principal component method is the orthogonality 

(independence) of the principal components. 

 To build a PCA of accounts and loads, a recurrent algorithm is more often used - Nipals 

[79], which calculates one component at each step. By the first action, the original matrix X is 

transformed and transformed into the matrix E0, a = 0. The second action is the application of the 

algorithm: 

1. choosing the initial vector t; 

2. 𝑝𝑡 = 𝑡𝑡𝐸𝑎/𝑡𝑡𝑡; 

3. 𝑝 = 𝑝/(𝑝𝑡𝑝)1/2; 

4. 𝑡 = 𝐸𝑎𝑝/𝑝𝑡 𝑝. 

 After calculating the (a-th) components, it is assumed that 𝑡𝑎 = 𝑡 and 𝑝𝑎 = 𝑝 . To 

calculate the following components, it is necessary to calculate the residuals 𝐸𝑎+1 = 𝐸𝑎 − 𝑡𝑝𝑡  

and apply the same algorithm, while replacing the index a with a+1. 

 

 2.2 Classification of MRI data for two pathologies 

 

 In my work, I used a sample of 2 groups. Each group consisted of 100 patients, each in 

turn containing 3 .dicom images. MRI-images were obtained in FLAIR scanning mode. 

Pathologies: glioblastoma and astrocytoma [9, 78]. 

 The collection of data that I used in my work is licensed under the Creative Commons 

Attribution 3.0 license and is freely available on the 

Internet(https://creativecommons.org/licenses/by/3.0/). Creative Commons is a global non-profit 

organization that promotes the sharing and reuse of creativity and knowledge through the 

provision of free legal tools. 

 It allows you to freely: 

 Share (exchange) - copy and distribute material on any medium and in any format; 

 Adapt (create derivative materials) - remix, modify and create new, based on this 

material for any purpose, including commercial. 

if the following conditions are met: 
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1. Attribution - The user must provide appropriate attribution, provide a link to the 

license, and indicate changes, if any, have been made. This can be done in any reasonable way, 

but not in a way that implies that the licensor approves of you or your use of the work; 

2. No Additional Restrictions - The User may not impose legal restrictions or 

technological measures that create legal barriers for others to do anything that is permitted by the 

license. 

FLAIR scan mode 

 FLAIR is another variation of the inversion-recovery sequence. In the FLAIR sequence, 

the liquid signal is canceled out by using a long TE echo time and a long TI. An inversion-

recovery sequence with a long inversion time (TI) of 2000-2500ms is used for liquid 

suppression. In FLAIR imaging, CSF (cerebrospinal fluid) and other fluids in the brain or spinal 

cord appear dark, causing lesions or other pathological processes to appear bright.  

 Astrocytoma is a tumor that develops from the astrocytic part of the glia and is 

represented by astrocytes. It can be localized both in the cerebral hemispheres and in the 

cerebellum, as well as in the brain stem and spinal cord. There are low (Grade I–II) and high 

(Grade III–IV) grade astrocytomas[73]. 

 Glioblastoma is a tumor that develops from glial cells of the nervous tissue of the brain. 

An extremely aggressive tumor classified as high grade Grade IV[73]. 

 The support vector machine (SVM) is a set of similar supervised learning algorithms used 

for classification and regression analysis problems. The property of the method is a continuous 

decrease in the empirical classification error and an increase in the gap. The main idea of the 

method is to translate the original vectors into a higher-dimensional space and search for a 

separating hyperplane with the largest gap in this space [77]. 
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 3 Development of approaches for the analysis of MRI data and their classifications 

 

 This chapter analyzes brain MRI-images for the following pathologies: glioblastoma and 

astrocytoma. 

 Images were searched from different sources with the same license. 300 glioblastoma 

images and 300 astrocytoma images were found. Figure 11 shows an example of MRI-images of 

the brain with pathologies: a) glioblastoma, b) astrocytoma. 

 
a) glioblastoma and b) astrocytoma 

Figure 11 –MRI-image of the human brain 

 The difference between pathologies lies in their degree of malignancy. In Figure 11b, it 

can be seen that the degree of focal lesions is lower compared to Figure 11a. But if we take into 

account the astrocytoma with a high degree of focal lesions, then it is not possible to distinguish 

visually. This requires the development of a classification program. 

 The dataset was converted from .dicom format to raster graphics format .jpg or .png. This 

was done by a separate program, shown in Figure 12. 
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Figure 12 – Flowchart of the general workflow of converting images 

 After translating the data set, the next step was to separate the bone structure (structure of 

the skull) from the brain, using the PAINT bitmap graphics editor, using the "Select" tool. The 

separation was carried out to reduce the objects for analysis. Figure 13 shows an MRI image a) 

with bone structure and b) without bone structure. 
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(a) original image, (b) image without bone structure.                                                                              

Figure 13 – Removal of bone from brain structure  

 The resizing of the images was carried out by the program indicated in Figure 14. 
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Figure 14 – Flowchart of a general workflow for image dimensionality reduction 

The analysis and classification of MRI-images was carried out by the program shown in 

Figure 15. The program algorithm consists of the following steps: 

1) Reading images; 

2) Application of the Canny operator; 

3) Application of the threshold method; 

4) Calculation of probability according to the formula: 

 

𝑃𝑖 =
𝑁𝑖

𝑁
, 

 

where  𝑁𝑖  – the number of pixels in the i-th interval; 

 N – the total number of pixels. 
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5) Calculation of the average probability and standard deviation: 

 

Рср =
∑ 𝑃𝑖

𝑁
, 

 

where  𝑃𝑖 –probability; 

 N–the total number. 

 

𝜎 = √
∑(𝑃𝑖 − 𝑃ср)

2

𝑁 − 1
, 

 

where  𝑃𝑖 –probability; 

 𝑃ср–average probability; 

 N–the total number. 

 

6) Application of the principal component method; 

7) Application of the support vector machine. 
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Figure 15 – flowchart of the general workflow for the MRI image analysis and classification 

program 

 The values for the thresholding method were taken in the range from 1 to 250, with a step 

of 10. The threshold value of the Canny operator was taken in the range from 0.1 to 0.9, with a 

step of 0.1 and a filter standard deviation of 0.1. The result of using the support vector machine 

is shown in Table 1. 
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Table 1 – Result of support vector machines using the Canny operator 

Canny operator threshold 

value 

Classified, % 

Glioblastoma Astrocytoma 

0.1 0 100 

0.2 3 96 

0.3 3 96 

0.4 3 96 

0.5 3 96 

0.6 0 100 

0.7 3 96 

0.8 3 96 

0.9 0 100 

 

 For comparison, a similar action was carried out without the Canny operator. As a result, 

the maximum value of the similarity of the pathology of glioblastoma was 0%, astrocytoma – 

93%. 

 The result of the principal vector method is shown in Figures 16–21. 

 

Figure 16 – PCA method with a Canny operator threshold of 0.2 
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Figure 17 – PCA method with a Canny operator threshold of 0.3 

 

Figure 18– PCA method with a Canny operator threshold of 0.4 
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Figure 19– PCA method with a Canny operator threshold of 0.5 

 

Figure 20– PCA method with a Canny operator threshold of 0.7 
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Figure 21– PCA method with a Canny operator threshold of 0.8 

 For comparison with the results obtained, it was decided not to use a dimensionality 

reduction program. As a result, the following classification of pathologies was obtained: 

glioblastoma – 3%, astrocytoma – 100%. 

 

Table 2 – Result of the support vector machine using the Canny operator 

Canny operator threshold 

value 

Classified, % 

Glioblastoma Astrocytoma 

0.1 0 93 

0.2 3 100 

0.3 0 93 

0.4 0 93 

0.5 0 93 

0.6 0 93 

0.7 0 96 

0.8 0 96 

0.9 0 96 
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Figure 22 – The PCA method with a threshold value of the Canny operator 0.2 
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CONCLUSION 

 

 In the course of the work, it turned out that the best result of the classification of 

pathologies is: glioblastoma – 3%, astrocytoma – 100%. The best result was obtained using the 

Canny operator, but without the image dimension reduction program. 

 The reason for such results can be attributed to the criteria that were chosen for the work 

and the approach with reducing the dimension of images. It was found that using the program 

without the Canny operator gives a worse result compared to using the Canny operator. The 

program was also compared using the Canny, Sobel, Previtt, Roberts operators, where the Canny 

operator showed the best result. 

 Of the two pathologies, glioblastoma is the more critical and the fact that it has been 

classified is an advantage of this program. 
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