

ABSTRACT

Bachelor’s thesis 46 pages, 47 figures, 8 sources, 1 appendix

The purpose of this work is to develop a 2D life simulator game that

brings competition to its genre.

Work results: The base mechanics and an extensive content for the game

have been created.

Several systems that are the base of this game genre such as time, weather,

population, buildings, character creation and animations have been created and

deployed in the game.

Research methods are theoretical research and practical implementation.

Key words: Unity, Video Game, 2D, Life Simulator

 2

CONTENT

Glossary 3

Introduction 5

1 Software theory of creating video games 7

1.1 Overview of general classifications of video games 7

1.1.1 Classification of games by platform 7

1.1.2 Classification of games by graphics 8

1.2 Analysis of game engines 10

2 Requirement analysis, development tools and high-level system presentation 12

2.1 Functional and non-functional requirements 12

2.2 Problem domain model 13

2.3 Domain formalization 13

2.4 Technologies and tools 17

3 Game engine and tools overview 21

3.1 Unity Engine 21

3.2 Unity Animation. 22

3.3 Unity Sprite Editor 23

3.4 Unity Tilemap Palette 25

4 Technical game analysis 26

4.1 Overview 26

4.2 Systems 26

4.3 Mechanics 36

4.4 Flows 38

Conclusion 41

References 42

Appendice A Additional illustrations 43

 3

GLOSSARY

Unity: The game engine that will be used to develop this project.

Steam: A platform where developers can publish their games and people can

buy and download their games on.

Life Simulator Game: A game in which the player lives or controls one or

more virtual characters (human or otherwise). Such a game can revolve around

individuals and relationships, or it could be a simulation of an ecosystem.

2D Game: Everything in the game is happening in a 2D plane.

NPC (Non-Player Character): Characters in the game that are not controlled

by human players.

Game object: Anything in the game that the player can see.

Particle system: Technique used in games that allows to reproduce otherwise

difficult phenomena’s like fire by using a lot of small sprites.

Playability: A measure that indicates if the game can be played or not. Not

just in the sense of controlling the game, but also taking into consideration the

quality of it.

Published: Put the game in a store to be sold.

Scene: A file in which each level is stored and contains the objects and

characters that exist in the game world.

Sprite: Sprites are simple 2D objects that have graphical images (called

textures) on them. Unity uses sprites by default when the engine is in 2D mode.

Tilemap sprite sheet: A set of sprites that are used to create a map.

Game save: A file written in the local disk that contains all the data and

progress of the player in the game.

Interactable object: Any object in the game that the player can interact with,

such as furniture, NPCs, shops, cars, etc..

Graphic settings: Menu of options that can be changed to adjust the quality

of the game’s display and level of details.

Bug: An error in the game that leads to a wrong behavior of something or

anything that is not how it should be E.g.: a character going through a wall.

 4

Multiplayer: A game mode that allows multiple players to play together in

the same game world while connected to the same server.

Cheats: Software or tricks to change the original behavior of the game to give

unfair advantage to the player.

Buff: In gaming, a buff is an effect placed on a character that enhances their

statistics or characteristics. buffs may be applied through gameplay, may be bought,

or may be applied by game developers. BUFF is an antonym of DEBUFF (Harmful

Effect)

Scriptable object: A Unity object that has a C# script attached to it with preset

variable configuration.

XP (Experience Points): Points that the player character receives to represent

his professional or personal growth in the game world.

UI (User Interface): This is the point of human-computer interaction and

communication in a device. This can include display screens, keyboards, a mouse

and the appearance of a desktop. It is also the way through which a user interacts

with an application or a website.

 5

INTRODUCTION

Background

This work is written on the basis of a development project of a 2D life

simulator game. In order to comply with the non-disclosure agreements, only data

that is non-sensitive and public will be used for this work.

The primary goal of this project is to develop an alpha version of the game

with core mechanisms and features.

Motivation

Noticing that “LITTLE SIM WORLD” game project doesn’t have any

competition in the market and is missing a lot of features and improvements that

fans have been asking and wishing for, for years, the motivation is to start a project

to bring something new to the market, something that will satisfy these fans’ wants

and requests.

Problem formulation

Using the knowledge learned during this bachelor degree and work

experience in order to develop and design a prototype of a videogame using the

Unity engine. Parts of the project that are not directly related to the architecture or

code are not a part of this paper. The art of the game is made by a paid artist as my

objectives and motivations are not related with art.

Specific objectives

• Design from scratch the whole game including writing the game’s scripts,

creating the game character models and their animations and the game

world scene.

• Learn to manage tasks and carry out the project satisfactorily.

• Achieve a fun gameplay for players by playtesting what will be made.

• Learn to balance the game in order to make it fun to play.

• Implement all base life simulator game components at the highest levels of

industry standards.

Scope of the project

 6

The final scope of the project is to release a game that is accepted by the

target audience of this project and at the level of expectations.

 7

1 SOFTWARE THEORY OF CREATING VIDEO GAMES

1.1 Overview of general classifications of video games

A computer game is a form of developmental and entertaining interaction

between a user and a computer, imitating life and imaginary situations in virtual

space, having a significant educational potential, which is to stimulate cognitive

interest.

There are a lot of computer games created, and from year to year there are

more and more of them. Computer games can be divided into groups, using various

methods.

The main way to categorize video games is by platform, which indicates

which device you can run them on. If the user does not have a platform for which

the game is intended, then he will not be able to play it.

Personal computer (PC, laptop, netbook)

Computers are the main platform for video games. The original job of

computers was to perform complex scientific calculations, but later they also took

on the role of the electronic typewriter, and then the role of the gaming platform.

Due to its gaming focus, personal computers acquired video cards, sound

cards, increased the power of processors to such heights that now they are able to

display photorealistic graphics in real time.

Personal computers, in turn, are subdivided into several sub-platforms by

operating systems (OS). Each operating system has its own tools for processing

video games.

List of the most popular computer OS series: Windows (from Microsoft), Mac

OS (from Apple), Linux (a free OS developed by the global Internet community).

1.1.1 Classification of games by platform

Game console (PS, Xbox, Nintendo)

A console is a hardware equipment that is mainly created to run video games.

Most consoles require a connection to a TV. But there are independent portable

consoles with a built-in screen. Unlike computers, consoles are ready-made, non-

 8

collapsible devices (only a few external parts can be replaced and updated). In this

regard, the development of consoles is a process, divided into clear milestones called

console generations. At the moment, the 9th generation of game consoles have

already been released. The most popular generations of consoles include: Sony

PlayStation (PSP, PSOne, PS2, PS3, PS4, PS5), Microsoft Xbox (Xbox, Xbox 360,

Xbox One, Xbox series), Nintendo 3DS, Wii, Nintendo Switch

Mobile device: phone, tablet

By technical characteristics, mobile devices are much weaker than stationary

computers; therefore, mobile games look somewhat simpler than ordinary games,

but the situation is gradually improving. Very often, computer games that are 5-10

years old are released on mobile phones.

On modern phones, games are run under mobile OS: Windows Mobile,

Android and iOS. For mobile distribution, games have created entire global services

such as the App Store and Google Play.

1.1.2 Classification of games by graphics

Classification by camera perspective

the point from which we look at the game world is closely related to the genre

of the game. In some genres it is easier to look from the perspective of the hero, in

some it is preferable to see everything from the side, and sometimes it is convenient

to observe the situation from a bird's-eye view. Some games have the ability to

change the game view camera right during the gaming session.

1st person view is the view in which we see the virtual world through the eyes

of the protagonist. This view is the most convenient way to get used to the role of a

virtual hero. It is also well suited for aiming, therefore it is used in shooters. This

view is used in these genres: action, shooter, RPG, life simulators, racing.

3D person view is the view in which we see the virtual world from the outside,

so that the main character is standing in front of the screen center, allowing you to

better assess the situation. The main character is always in sight, therefore his

 9

external looks and animations should be clearly visible. This view is used in these

genres: action, shooter, RPG, life simulators, racing, fighting games, 3D platformer.

2D side view is a side view that lets you see different layers of elevation of

the level for example; building floors and platforms. Lack of the 3rd dimension

greatly simplifies the perception of the game world. Used in genres: platformers,

puzzle games, fighting games, 2D action.

Classification by graphics technology.

When choosing a game, many inexperienced players are guided by the

graphics, therefore there is a division of games by type and quality of the graphic

image. The low graphical processing power of first generation computers caused a

lot of restrictions to game developers. Because of this, many older games used text

design rather than graphics. Games of this kind are more like an interactive book

rather than a video game. But in our time there are similar games that are still being

developed and played nonetheless. 2D graphics (vector graphics) are the most

natural looking graphics. The images are composed of individual pixels or colored

squares. The era of 2D games popularity passed in the 1990s, but left its mark on the

gaming culture in the form of a pixelated style graphics. In the late 2000s, in the

wake of the success of indie games, the fashion for 2D games returned. There is also

a technology of vector images, in which objects do not consist of pixels, but of

precise geometric coordinates, connected by lines. This type of image allows you to

draw smoother lines without pixelation. Enlarging the image does not deteriorate its

appearance.

Today 3D graphics are the most popular graphics format in computer games.

Through the use of trigonometric formulas, game developers can create an illusion

a three-dimensional world, displayed on a two-dimensional plane (screen). The

computer calculates the real 3D models and displays the mathematically calculated

2D projections of these 3D objects. The ideas of three-dimensional images date back

to the 1970s, and the real three-dimensional graphics did not appear until the early

 10

1990s.

Augmented reality games (mobile devices with a video camera) are games

where the real world is displayed through the camera lens screen, but with the

addition of virtual objects. The player drives a video camera, looking for appearing

objects or takes aim and destroys them. Augmented reality is an interesting and

unusual idea, but it has not gained wide popularity yet.

Virtual reality (VR) implies the complete immersion of the player in the

virtual world. In the current stages of game development, it is impossible to achieve

full-fledged VR experience due to hardware limitations.

At the moment there are VR headsets, in which are broadcast stereo graphics. Hand-

held sensors can display real hand movements in virtual space. But all of these are

just the first steps towards VR.

1.2 Analysis of game engines

At the moment, there are a huge number of game engines. A game engine is

a toolkit designed to simplify and accelerate the game development, so as not to

write everything "from scratch”, it is as well the module of the game that includes

the graphics and display logic. The engine contains a set of systems that control

certain parts of the game. For example, the engine can contain:

• Graphics subsystem (animation, object rendering, etc..)

• Sound subsystem

• System kernel (support for various platforms)

• Support for scripts and programming languages

Each engine represents a powerful game development environment.

When developing games, developers sometimes create their own engines, which is

more laborious and costly, but you can also use a ready-made game engine.

 11

To develop a logical computer game with shooter elements for example, it is

important that the engine has a number of characteristics:

• Multiplatform: The engine should allow to create games that are

compatible with different platforms such as PC and consoles

• Should contain tools for working with 3D graphics and animations

• Support network mode for multiplayer gaming

Unity Engine is a multi-platform game engine designed for Windows, Mac

OS X and Linux games. It comes with a free and PRO version and they both come

with the same features and tools (PRO license required only if the company’s yearly

revenue is more than 100,000 USD) and Supports iOS, Android, Nintendo Wii,

PlayStation 3, Playstation 4, Xbox 360 and Xbox One. All software products created

in the environment of the Unity game engine have full support for the graphics

technologies DirectX and OpenGL. By virtue of convenient interface, simplicity of

working with the engine, as well as the availability of a free version of the game

engine, Unity Engine is one of the most popular ready-made engines for developing

games. The editor built into the Unity Engine has an intuitive interface that is easy

to work with and adapt to. The interface consists of several windows and work panels

and allows to customize the game project directly in the editor. It also has tools like

the built-in terrain editor, which allows you to model game locations directly in the

engine, creating complex geography and overlaying textures right in the editor. The

engine supports the programming language C# by default Since version 4.0

It also comes in with a built-in animation editor Mecanim which allows to use

animations with similar characters.

 12

2 REQUIREMENT ANALYSIS, DEVELOPMENT TOOLS AND

HIGH-LEVEL SYSTEM PRESENTATION

2.1 Functional and non-functional requirements

 The requirements written below are for the final project and not the final

version of the game, but nevertheless persistent throughout the whole stage of

development. It is important that this game project fulfills the basic requirements

of a universal video game and of this typical genre to ensure acceptance from the

wide audience that we plan to target.

Functional Requirements

1. Players should be able to create and customize one or multiple characters

2. Players should be able to save and load all their game progress whenever

they want

3. Players should be able to use any interactable object in the game

4. Players should be able to change the graphic options and audio/game

settings anytime in the game from the options menu

5. Players should be able to pick up, remove and manage items in their

inventory

6. Players should be able to speed up, slow down or pause the game

7. Players should be able to move freely around any accessible areas in the

game

8. Players should be able to easily navigate between the game world scene

and the main menu scene

9. Players should be able to see the current day, season, time and money in

the game’s on-screen UI.

Non-Functional Requirements

Stability: The game must be virtually free of bugs.

Performance: The game must be playable on Windows OS and DirectX 11.

Minimum specs required:

1. Memory: 4GB

 13

2. GPU: Intel HD 4000

3. CPU: Intel Core 2 Duo T5600

4. OS: 64-bit Windows 7/8/8.1/10

5. Deployment: The game must be deployable on Steam.

2.2 Problem domain model

 Life simulator games are all about “maintaining and growing a virtual life”,

where players are given the power to control the lives of autonomous people or

creatures. The problem presented here is such that, in order for a person to

participate in an activity, he would need to have the appropriate tools and

environment for that.

Figure 1. Class diagram, illustrating the general problem domain model

The problem here is you cannot participate in the desired activity if the

environment or weather don’t allow for it. For that, all essential elements illustrated

in the above figure (Figure 1) need to be digitized and recreated.

2.3 Domain formalization

To solve the previous issue, a life simulator game offers the option to

digitize a complete environment for the player to do an activity in a pre-set virtual

environment. Also, other limitations or constraints such as physical movement are

 14

not important requirements or at least, not as important as in the real-life situation.

Figure 2. Class diagram, illustrating the general formalized domain model

To create a representation of a slice of real life in a virtual environment, it

was decided that these elements need to exist in the game scene. These elements

affect the player’s experience and immersion which is what players seek in such

video games.

 15

Figure 3. Class diagram, Clarifying major base systems

The Weather System is designed to add immersion to the game and

reinforce the feel of living in different seasons by casting different weathers at

different seasons in the game with visual and auditory experience.

The Day and Night Controller is also an important part of the daily routine

of the game. It controls the lights in the game, such as sunlight and buildings’

lights, in a way that reflects the exact daylight in real life, but in different speed. It

is also designed to change light intensity and colors dynamically based on the

season of the game.

The Save Manager keeps most of the game’s data and creates a copy every

time the user saves the game or abruptly ends the game session. Data saved include

the player’s position and his possessions, the day cycle etc..

 16

Figure 4. Class diagram, Clarifying time-governed movable object

Figure 5. Class diagram, Clarifying player interaction circle

The Clock governs the time in the game. It controls the passing of time and

the day length in seconds relative to real time and can receive instructions from the

Time Management buttons in the player’s UI to pause or speed up the game.

This system directly controls the player, NPCs and cars movement and

animation speeds.

The Inventory System controls the interaction between the player and his

inventory and other storages such as fridges or shelves. It contains the instructions

on how to move items, stack them, reduce quantity and drop on the floor.

Interactable Objects are any object in the game that can be interacted with.

It is designed to have interaction conditions and animations and play specific

 17

sounds to increase immersion.

Some of these objects can be owned by the player while others are public.

In the game’s world scene, a player can do many activities such as

socializing with other players, getting a job and working or just shopping.

2.4 Technologies and tools

The framework that was chosen for this project was Unity (using C# as

programming language) for the following reasons:

1. Unity provides simple and intuitive UI and tools for 2D game making.

2. Unity is one of the biggest game engines in the market. It’s free, stable and

has long-term if not life-time technical support and updates.

3. Unity has a huge marketplace for plugins, assets and packages that are

either free or paying and can be very helpful to the making of games.

4. Unity is arguably the best engine for making 2D games thanks to its

Universal Render Pipeline offering the 2D renderer that perfectly handles

layers and sorting orders of sprites and images as well as offers high quality

graphics.

5. Unity offers internal tools such as animation tools and tile map palette

which replace the paying and expensive 3rd party plugins that you would

have to otherwise buy.

For project and task management, Trello was chosen because it’s simple, free

and very practical and fast when it comes to task assignment and bug

reporting/fixing.

Discord is the chosen communication software for quick team chats, alerts and

cooperation.

Photoshop for art creation as it is the best software for image editing and sprite

drawing.

1.5 Methodology

An agile methodology is a must for this project, other methodologies are way

too slow and they will almost assure a failure in this project because they do not have

 18

the fast iteration that is needed to make the game fun to play. Scrum is the most

popular agile methodology in software development and specially in video games,

and this is because it helps to ensure that the goals are meet with quality in each part

of the development using the Sprints. For those reasons the agile methodology

Scrum will be used. The following figure describes the process I will follow in a

general term:

Figure 6. Methodology (self-made)

Research

The first things to be done will be the research. A good research is

indispensable, and it is the first step for the project, specially information about

competence and trying to deduce what makes them good games and how to translate

this to our game. After this, once the game idea is clear and it is decided what we

will do, it is time to look for the art assets we want and plan all the management.

Design

Once everything is planned, the design must be done following the references

chosen in the research. A GDD (Game Design Document) will be made.

 19

Figure 7. Screenshot of an example page from the GDD

The design includes the game systems, game mechanics, the UI, the player,

NPCs and their behavior, the items, the music and the music effects.

An art guide will also be made and will include all guidelines for artists to ensure

consistency and conformity of all art in the game.

Development

Right after the main parts of the GDD are finished, the game can be started.

The main focus in the first stage of the development of the prototype will be creating

 20

the main parts of the map inside Unity. Once we have that, we can start putting things

on it, starting with the player, and including its skills and its level up system together

with the environmental sounds. Once the player can move inside the map and the

level up system is made, the NPCs will be added. Once we have both player and

NPCs, it is time to start building the interaction between them and developing the

AI of the NPCs with their behavior. With this we can create a spawn and behavior

system. Once done, the main playability of the game will be finished.

Testing

This could be considered a really simplistic prototype and a simple playtest of

the game can be done; however, it is too early to look for people to play the game

because it would be too time consuming in exchange of little feedback. However, a

QA playtesting must be done at this point. This way we can find not only bugs, but

also start checking if the game is fun or not. In case of bad design or missing parts,

we have to go back to design and develop some features. With this iteration we can

improve the game faster and fail early in the project when we have time to adapt and

solve the problems. While testing, all the final features of the prototype will be

developed in parallel. This includes all game system, everything related to the UI

and the players and NPCs character design. With the improvements from the

iteration and with the final parts of the development finished, we can plan an external

playtesting. A pre-alpha version will be released and early bird players will be giving

their feedback which will be used to improve the game in future iterations.

 21

3 GAME ENGINE AND TOOLS OVERVIEW

3.1 Unity Engine

Unity core platform enables rapid editing and iteration in your development

cycles, with real-time previews of your work. You can create 2D or 3D scenes,

animations or cinematics directly in the Unity Editor.

Figure 8. Unity Editor screenshot, illustrating the main layout and menus of the

Unity Engine.

In the picture above we can see the multiple windows that offer different

functionalities each, most important ones here being:

Scene – The scene window shows the visual rendering of the objects inserted into

the scene in the Hierarchy window.

Hierarchy – The Hierarchy window shows the objects that exist in the

scene. Here you can remove and add new objects and basically shape the

game/project in whatever way Unity allows for through the Inspector.

Inspector – The Inspector window shows all the modifiable variable and

scripts assigned to a selected game object from the Hierarchy window. Here you

can assign scripts to them and modify their transform, material and other variables

depending on the type of object.

 22

3.2 Unity Animation.

Figure 9. Unity Animator screenshot, illustrating animation states and their

conditions.

 Animation States are the basic building blocks of an Animation State

Machine.

 Each state contains an individual animation sequence (or blend tree) which will

play while the character is in that state. When an event in the game triggers a state

transition, a character will be left in a new state whose animation sequence will then

take over.

 23

Figure 10. Unity Animation screenshot, illustrating the animated object, it’s

bones/children game objects and the animation keyframes.

 Unity’s Animation features include retargetable animations, full control of

animation weights at runtime, event calling from within the animation playback,

sophisticated state machine hierarchies and transitions, blend shapes for facial

animations, and much more.

3.3 Unity Sprite Editor

Sometimes a Sprite Texture contains just a single graphic element but it is

often more convenient to combine several related graphics together into a single

image. For example, an image could contain component parts of a single character,

as with a car whose wheels move independently of the body. Unity makes it easy to

extract elements from a composite image by providing a Sprite Editor for the

purpose.

 24

Figure 11. Unity Sprite Editor screenshot, illustrating splitting a single sprite into

different elements.

Figure 12. Unity Sprite Editor screenshot, illustrating the import settings for the

Sprite Editor.

Through the Inspector window, we can see and edit the settings of the sprite

editor import of a specific sprite that we select from the assets available in the project

assets folder. In Sprite mode, we can specify whether a sprite image is actually a

sprite sheet (multiple sprites in one image) or a single one.

 25

In case of a sprite sheet (multiple image) clicking on the “Sprite Editor” button

takes you to the Sprite Editor window where you can split images automatically

or manually.

3.4 Unity Tilemap Palette

Unity Tile Palette is a 2D Tilemap System that allows to design 2D levels and

maps based on a grid system while saving a huge amount of time. This system is

free and built directly into the Unity editor and provides a plethora of features.

Figure 13. Unity Tile Palette screenshot, illustrating the Tile Palette main window

and functions.

 26

4 TECHNICAL GAME ANALYSIS

4.1 Overview

There are multiple systems at play here, and most of these are basic systems

of this game genre. At this point, these are the major systems that exist in the present

state of the game development.

Figure 14. Scene Class diagram, illustrating the main game scene systems.

Let’s explain each system individually

4.2 Systems

Error Feedback System: This system is responsible for notifying a player

that some action went wrong such as not enough money to buy an item from a shop.

In this case the Error Feedback System shakes the money canvas by simply calling

its singleton’s ShakeMoneyError() method.

 27

Figure 15. Unity Editor screenshot, showing the feedback system script and

variables.

Figure 16. Error feedback class diagram, showing the error feedback system.

 Inventory System: Every container in the game, including the player’s

inventory and containers such as fridges and wardrobes have their information

displayed and managed by the inventory system.

In order to toggle a specific container to open or close simply call the method

OpenCloseContainer(ItemList list, string containerName) from the Inventory

Controller

Figure 17. In game screenshot, showing the player inventory (on the left) and a

random container (on the right).

 28

Figure 18. Player inventory Class diagram, illustrating inventory management.

 Notification System: Shows a message notification on the screen by calling

the method CreateNotification(“Random Text”, sprite).

It’s also possible to show and icon with the message.

Figure 19. In game screenshot, showing a random test notification.

 29

Figure 20. Notification class diagram, showing the notification system.

 Time Management System: Responsible for setting and adjusting the game’s

speed depending on certain actions or through buttons on the respective UI.

Figure 21. In game screenshot, showing the time management UI control

buttons.

 30

Figure 22. Time management class diagram, showing the time management system

and game clock.

Save and Load System: This system is responsible for saving and loading

the game data as well as player’s saved game data including player skills, statuses,

job history and job progress, world objects, furniture, building changes, etc..

Figure 23. Save manager class diagram, showing the save/load system in the

game.

 31

Weather System: Cycles between weathers created using scriptable objects

after a random amount of in game time. It can cast weather particles if current

weather has particles, pauses it or fade it off.

Figure 24. Unity Editor screenshot, showing weathers and their particles assigned

to the Particle System Map in the Weather System.

Weather icon is shown in the calendar date UI on the top left and a base

particle effect is applied on weather start (sun rays, rain drops, clouds)

Figure 25. Screenshot, showing the weather icon in the calendar UI.

A set of pre-configured list of weathers with probabilities is created as a

scriptable object and fed to the WeatherChangeHelper class to initialize and cycle

through using the WeatherSystem.

Weathers can affect the player character’s status or give bonuses or penalties

by casting a buff or debuff on a player. This relation can be seen in the buff system

section below.

 32

Figure 26. Weather system class diagram, showing the weather cycling system in

the game.

 WeatherData is an abstract class that is used to make scriptable objects to

create custom weather data with custom settings such as ambient sounds and effects.

Currently, available weathers in the game are Sunny, Rainy, Cloudy and Normal

and are cycled through using a preset probability table based on the seasons of the

game. E.g. in Summer it’s more likely to be sunny or normal compared to winter.

Buff System: Is responsible for adding or removing buffs from players,

keeping tab on all current instances of buffs and debuffs given to the player.

 33

Figure 27. Unity Editor screenshot, showing a buff as a scriptable game object

with different settings.

Figure 28. Buff class diagram, illustrating the character buff/debuff system.

 The Buff class is an abstract class that is used to create scriptable objects to

make buffs and debuffs with custom settings such as effect and duration. These buffs

are then loaded from a resource folder inside Unity into BuffHandler and saved in

the memory to be instantiated through specific events in the game.

 34

Figure

29. Buff class diagram, illustrating the relation between the buff system and

weathers.

WeatherData can add or remove one or many buffs/debuffs on Cast and

OnDestroy to the player.

Day and Night: Is responsible for the day and night cycle of the game and

controls effects such as fog and scene lighting intensity.

Figure 30. Ingame screenshots, showing day and night times of the day.

 35

Figure 31. Day night class diagram, illustrating the day and night system

controller.

The DayAndNightController light intensity and color are affected by

weather and season. In summer a day is longer and the sun rises earlier than in

winter.

Bubble System: Spawns a bubble that plays an animation when one of

player’s statuses is very low as a reminder to do an activity that recovers it,

otherwise if it falls below a specific threshold, a penalty is applied as a debuff.

Figure 32. Ingame screenshot, Showing player statuses and warning status bubble.

 36

Figure 33. Bubble system class diagram, showing the bubble spawner system.

The PlayerStatsManager is the main script responsible for managing all

player stats. Its Update() function is called every frame and in turn calls the

PlayerStatsUpdater script’s Update() function to update the player’s statuses.

Each of player’s stats is reduced or increased by a specific amount or percentage

over time and is affected by variables such as the weather and the activity being

done (Running, sleeping, cooking).

4.3 Mechanics

Calendar: Stores information about a day, month, weeks and seasons and

responsible for passing days and updating the Calendar UI.

Figure 34. In game screenshot, showing the Calendar UI.

Clock: Is responsible for the game time related matters such as the game time

relative to real time and pause/play functions.

 37

Figure 35. Clock class diagram, showing the clock class.

The in game time is faster than real life time, where 1 day in game is about 24

mins in real time. This is defined in the Clock class as the OneDayInSeconds

variable. Also, a season is 30 days in game or 12 hours in real time.

Player Stats and Skills: Controlled by a manager, stats increase and drain

according to different circumstances and actions and can be affected by external

factors from other systems such as buffs/debuffs and weather.

Figure 36. In game screenshot, showing the player’s Stat UI.

 38

Figure 37. In game screenshot showing the player’s Skills UI.

 Some of the player skills are still in development. Those skills will be

unlocked and used when we add a corresponding activity to said skill.

At this stage, integrated skills are Fitness, Logic, Cooking, Writing and Repairing

and are used in corresponding activities such as running on a treadmill, writing a

novel, repairing some of the furniture in the house when they break, etc..

4.4 Flows

Some of the interactions between systems in the game can be simple, while

others are more complex and require multiple steps of functions to achieve.

Since Unity Engine is a graphic engine, it directly contains a graphic pipeline and a

set of options that can be publicly called to change the visuals of the game.

These functions are called when the user makes changes through the settings menu

displayed in either the main menu or the game scene.

Some of the options when set to a high level require a high-performance graphic

card to process, while on low, should be able to run smoothly on the defined

minimum setup in the non-functional requirements.

 39

Figure 38. Sequence diagram, showing the flow of interaction with interactable

objects.

All interactions with interactable objects in the game are lead with an

intermediate player movement class that is responsible for movements, movements

barriers, checks and interaction approvals.

Most interactable objects have general and specific conditions of use, for example

the object should not be busy, broken or placed in a locked place or in a wrong

position.

Figure 39. Sequence diagram, showing the game speed cycling.

 Cycling between game speeds is called by user using the Time

Management buttons or keyboard buttons.

 The default speed is a variable set in the Clock class with a default value of

1, which is the normal speed relative to real time. Cycling through speeds sets the

 40

game to faster speeds. The game can be paused or un-paused as well using its

respective preset button which sets the game speeds to 1 (resumed) and 0 (paused).

Figure 40. Sequence diagram, showing the weather cycle

The Weather System periodically sets a new weather from the available

weathers of the current season in the game.

 The Weather System calls the GetRandomWeather() from the Weather

Helper that contains a table of probabilities of weathers based on seasons, and

returns a weather that inherits from Weather Data, then casts the weather special

effects if it has any, followed by playing its specific ambient sounds and particles.

 41

CONCLUSION

 As part of this work, the base functionalities and content of this genre has been

developed in this game successfully. Most set tasks corresponding to the

implementation of the formulated requirements were solved. The potential to expand

the developed solution allows the possible further development of the functionalities

and content of the sim game. The pre-alpha version of the game has been released

on Patreon and the feedback was overwhelmingly positive.

 42

 REFERENCES

1. Unity // Wikipedia. – [S. l.], 2021. – URL:

https://en.wikipedia.org/wiki/Unity_(game_engine) (access date: 01.05.2021)

2. Steam // Wikipedia. – [S. l.], 2021. URL:

 https://en.wikipedia.org/wiki/Steam_(service) (access date: 01.05.2021)

3. GameObject // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/ScriptReference/GameObject.html (access date:

01.05.2021)

4. Particle System // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/ScriptReference/ParticleSystem.html (access date:

01.05.2021)

5. Tilemap // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/Manual/Tilemap-Isometric-SpritesImport.html (access

date: 01.05.2021)

ScriptableObject // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/Manual/class-ScriptableObject.html (access date:

01.05.2021)

6. Unity Animation // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/Manual/AnimationSection.html (access date:

01.05.2021)

7. Unity Sprite Editor // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/Manual/SpriteEditor.html (access date: 01.05.2021)

8. Unity Tilemap Palette // Unity docs. – [S. l.], 2021. URL:

https://docs.unity3d.com/Manual/Tilemap-Palette.html (access date:

01.05.2021)

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Steam_(service)
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/Manual/Tilemap-Isometric-SpritesImport.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/AnimationSection.html
https://docs.unity3d.com/Manual/SpriteEditor.html
https://docs.unity3d.com/Manual/Tilemap-Palette.html

 43

APPENDICE A ADDITIONAL ILLUSTRATIONS

Launching the game (main menu)

 In the main menu, we can change the game’s video and audio settings, load a

game, proceed to the character creation through the new game button or exit the

game.

Figure 41. Main menu screenshot

Clicking on the settings menu opens the settings panel.

Figure 42. Main menu screenshot, showing the settings panel.

Creating a character (main menu, character creation)

In the character creation, we can choose the character’s gender, body parts,

 44

clothes and clothes’ color and name. We can also rotate the player.

Figure 43. Character creation screenshot.

Figure 44. Character creation screenshot, showing different sides of the player

character.

Entering the game world scene

Just after the main game scene, we go straight to the game world scene where

we can start interacting with the game world and shape the character’s life in

whichever way we want.

 45

Figure 45. In game screenshot, showing the player’s house in the game

world.

Figure 46. In game screenshot, showing the player’s house in the game world.

 46

Figure 47. In game screenshot, showing the player’s house in the game world.

Almost every object in the game world is interactable, including the furniture

shown in this picture as well as NPCs (non-player characters) which are generated

randomly and roam the game world, contributing in different ways to the player’s

gameplay experience.

