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Abstract

This study presents the results of

the classification of diffuse reflectance

(DR) spectra and multiexcitation

autofluorescence (AF) spectra that

were collected in vivo from precan-

cerous and benign skin lesions at

three different source detector separa-

tion (SDS) values. Spectra processing

pipeline consisted of dimensionality

reduction, which was performed

using principal component analysis

(PCA), followed by classification step using such methods as support vector

machine (SVM), multilayered perceptron (MLP), linear discriminant analysis

(LDA), and random forest (RF). In order to increase the efficiency of lesion

classification, several data fusion methods were applied to the classification

results: majority voting, stacking, and manual optimization of weights. The

results of the study showed that in most of cases the use of data fusion

methods increased the average multiclass classification accuracy from 2% up

to 4%. The highest accuracy of multiclass classification was obtained using the

manual optimization of weights and reached 94.41%.

KEYWORD S

autofluorescence, data fusion, diffuse reflectance, machine learning, multimodal
spectroscopic method, skin cancer

1 | INTRODUCTION

The standard clinical procedure for skin cancer diagnosis
in case of a suspicious lesion is based on a surgical biopsy
for histopathological grading. But this procedure is inva-
sive and has low sensitivity: Heal et al. [1] showed that
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compensatory hyperplasia; CV, cross-validation; D, dysplasia; DR,
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discriminant analysis; LOOCV, leave-one-out cross validation; MO,
manual optimization of weights; MV, majority voting; OVO, one versus
one; OVR, one versus rest; PCA, principal component analysis; PP,
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the diagnosis of skin cancer and precancerous skin states
using conventional biopsy was associated with a sensitiv-
ity of 63.9% for basal cell carcinoma, 41.1% for squamous
cell carcinoma, and 33.8% for malignant melanomas.

In recent years, noninvasive optical methods of skin
cancer diagnosis using optical technology including opti-
cal coherence tomography [2–4], confocal microscopy
[5–7], hyperspectral [8–10], and multispectral imaging
[11, 12], spectroscopic methods such as Raman spectros-
copy [13–16], autofluorescence (AF) spectroscopy
[17–19], and diffuse reflectance (DR) spectroscopy
[20–22], have been actively developed. The most common
advantages of these methods, referred to as optical biopsy
[23, 24], are noninvasiveness and the ability to perform
the examination in real time. However, all of these
methods deal with one or several physical properties of
the skin under study, which may not always be sufficient
for differential diagnosis of states with close symptoms.

A very promising approach is to combine several
techniques in a single study to improve diagnostic accu-
racy. Among these combined systems, which are also
referred to as multimodal, a combination of AF spectros-
copy and DR spectroscopy is most often [24–28], as it pro-
vides the information on both endogenous fluorophore
concentrations (by AF spectra) and skin absorption and
scattering properties (by DR spectra). These methods can
also be easily combined in one device. DR and mono-AF
spectroscopy can be also combined with Raman spectros-
copy [29, 30]. To summarize, DR and AF spectroscopy
provides a significant amount of information for the diag-
nosis of skin lesions and can be easily in combined in
one device.

Despite all advantages, application of the combina-
tion of AF and DR spectroscopy for skin analysis requires
the use of data processing methods for feature extraction/
selection and classification, as the absorption and fluores-
cence ranges of the skin internal components have many
overlaps in the visible range, which significantly compli-
cates analysis and interpretation of results. Statistical
methods [31, 32] and principal component analysis
(PCA) [33, 34] are most commonly used for feature selec-
tion/extraction. For spectrum classification purposes,
SVM [32, 34], LDA [35], and artificial neural networks
[36–38] are the most commonly used.

Implementation of bimodal spectroscopic device for
diagnosis of benign and precancerous skin states were
investigated by our team in several studies. In Ref. [39], a
combination of AF spectroscopy and DR spectroscopy in
a bimodal approach improves the accuracy of pairwise
classification between the four histological classes of
mouse skin carcinogenesis compared to each modality
used separately. In a second published study [40], our
team showed that the use of multiple SDSs improves

diagnostic accuracy and that SVM was the most appropri-
ate classification algorithm compared with LDA and
k-nearest neighbors (KNN) for our task. Classification
was also performed pairwise for all classes. In the previ-
ous study [41], a hybrid feature selection approach (dis-
crete cosine transform and mutual information) was
applied. Classification was also performed by using
SVM one versus all method. The obtained accuracy of
the multiclass classification was 81.7%. However, the
obtained value is lower than for traditional biopsy and
should be increased.

A possible way to increase the accuracy of classifica-
tion of data obtained from different sources is the use of
voting or data fusion methods [42]. In context of combin-
ing initial data for further implementation of machine
learning methods, all the data fusion methods can be
roughly divided into three types: fusion of the data before
processing, decision fusion methods, and methods that
combine both strategies. In previous studies [39–41], our
team tested only the first type of data fusion, however,
implementation of other strategies, such as decision
fusion, is rather promising.

The aim of this study is to develop and optimize a DR
and multiexcitation AF spectra analysis pipeline, includ-
ing dimensionality reduction, classification and applica-
tion of various data fusion techniques to properly
combine information obtained by different groups of
spectra. We propose to use PCA to reduce the dimension-
ality of the spectra without extracting spectral features.
Support vector machine, linear discriminant analysis,
multilayer perceptron classifier, and random forest classi-
fier were chosen for classification step, followed by a data
fusion step using majority voting, stacking, and manual
optimization of weights for the results of classification.

The paper is organized as follows. In Section 2, it
describes the data set under study, the experimental
setup and the data analysis methods that were used in
the study. The results of lesion classification before and
after the application of data fusion methods are shown in
Section 3.

2 | MATERIALS AND METHODS

2.1 | Experimental setup

A detailed description of the multimodal spatially
resolved spectroscopic system used in the study was pre-
sented in the previous papers [39–41]. The main scheme
of this set-up is shown in Figure 1.

Xenon lamp emitting mainly in the 300–800 nm spec-
tral range and a system of linearly variable band-pass fil-
ters were used to obtain multiexcitation AF and DR
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spectra corresponding to different excitation wavelengths
or DR spectra. The light was focused into the source fiber
core, that contains 37 optical fibers (numerical aperture
is 0.22, SEDI, France) arranged in concentric circles
within the 2 mm-diameter bundle. For this application,
three different source-detector separations were selected:
271 μm (SDS1), 536 μm (SDS2), and 834 μm (SDS3) for
distances between the excitation fiber #32 and the detec-
tion fibers #33, #16 and #30, respectively (see Figure 1).
The latter were selected among the bundle fibers as close
as possible to the probe border in order to be more easily

located by the investigator and precisely positioned onto
the skin measurement area targeted. Main characteristics
of the device are shown in Table 1, including AF excita-
tion peak wavelengths and average output (incident)
power used during the study.

The spectra collected at three SDS were simulta-
neously measured by an imaging spectrograph. Each
measure was repeated three times and then averaged
to improve the signal-to-noise ratio. These averaged
spectra were used as the initial data for further
processing.

FIGURE 1 Scheme of the spectroscopic set-up.

TABLE 1 Main light source and detection characteristics of the device used during the experimental study.

Modality
Source
wavelength (nm)

Output
power (μW)

Spectra acquisition
range (nm)

Source-detector
separations (μm)

Diffuse reflectance spectroscopy Ranges

370–540 430

450–640 305

560–740 242

Multiexcitation Autofluorescence
spectroscopy

Peak (FWHM)

AF1 = 360 (17) 19 390–720 SDS1 = 271

AF2 = 368 (17) 25 SDS2 = 536

AF3 = 390 (17) 32 SDS3 = 834

AF4 = 400 (15) 30

AF5 = 410 (15) 30

AF6 = 420 (15) 26

AF7 = 430 (15) 20

Abbreviation: FWHM, full width at half maximum.
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2.2 | Characteristics of the dataset under
study

The experimental protocol of this study was approved by
the French Ethical Committee on Animal Experimenta-
tion. Twelve-week-old female mice were divided into two
groups: the control group with eight sham-irradiated
mice and the test group included 20 mice, that were irra-
diated by UV with a fluence of 3 mW/cm2 for 20 s each
time from the dorsal side [40]. Spectra were collected on
the backs of mice at several constant points to increase
the chance of reaching the lesions.

The data set consisted of AF and DR spectra mea-
sured in vivo on N = 246 mice skin samples. Based on
the results of the histopathological analysis, all mouse
skin samples were classified into four classes: healthy
skin (H), compensatory hyperplasia (CH), atypical hyper-
plasia (AH), and dysplasia (D).

It should be noted that atypical hyperplasia presents
the risk of evolving into dysplasia, which in turn can
develop into benign neoplasia or squamous cell carci-
noma. Whereas compensatory hyperplasia is not a pre-
cancerous state of skin. Therefore, classifying all the
spectra as potentially precancerous (PP) and not at risk is
also of some interest. The characteristics of the data set
under study are presented in Table 2.

Compensatory hyperplasia is characterized by the
proliferation of keratinocytes, so mitoses can be detected
in the upper layers, whereas “normally” they are limited
to the basal layer. Hyperproliferation is accompanied by
strong metabolic activity of keratinocytes, which leads to
increased keratin synthesis, as a result of which the kera-
tin layer covering the epidermis increases significantly.

Atypical hyperplasia corresponds to the “intermedi-
ate” state of the tissue, that is, the stage when abnormal
morphological elements become visually distinguishable,
but no accumulations were detected. Among the abnor-
mal effects, chromatin heterogeneity in the nuclei was
mainly distinguished, with the upper layers still contain-
ing nuclei, which indicates cytological dismaturation and
disorganization of cell layers.

In case of dysplastic hyperplasia (or “dysplasia”) in
addition to the presence of atypical cells mentioned
before, there were characteristic features of keratinocyte
dysfunction (parakeratosis and dyskeratosis) and dermal
fibroblasts (elastosis). Parakeratosis corresponds to a ker-
atin layer that still contains keratinocytes or cell nuclei,
whereas normally the stratum corneum consists only of
fully mature keratin filaments. Dyskeratoses correspond
to fully mature (differentiated) keratinocytes in the lower
layers, whereas normally keratinocytes fully mature only
on the surface, in the stratum corneum. Similarly, fibro-
blasts of the dermis damaged by UV radiation synthesize
abnormal elastic fibers: short and thick. Thus, atypical
hyperplasia and dysplasia have similar symptoms and
have similar effects mostly on the morphology of the tis-
sue and, as a consequence, on its scattering properties.
However, the effect of dysplasia on skin properties is
stronger.

The main symptoms of the skin states under study, as
well as their effect on skin properties, are presented in
Table 3.

A description of the diagnostic criteria for all classes
and some examples of microscopic images of the mice
skin with different types of hyperplasia, were presented
in [40]. An example of the AF spectral curves for excita-
tion wavelength λ = 360 nm obtained for all classes at
SDS1 = 271 μm are shown in Figure 2. In addition,
Figure 2 shows the standard deviations obtained by aver-
aging the spectra by class.

It can be seen that for all of these classes the areas of
standard deviations overlap significantly, making the
classification of the spectra a rather difficult task. This
problem can be dealt with by implementing data proces-
sing techniques in combination with machine learning
methods for classification.

2.3 | Spectrum analysis pipeline

The general scheme of the spectroscopic data analysis
pipeline includes pre-processing, classification and data
fusion steps, due to the use of two modalities (DR and
AF), seven “submodalities” (AF1–AF7) and three SDS
values, which resulted in 24 groups of spectra under
study: one DR spectra and seven AF spectra with differ-
ent excitation wavelengths for each of all three SDS.

2.3.1 | Preprocessing of the spectra

The initial spectra preprocessing stage consists of two
steps: dimensionality reduction/feature extraction for
every group of spectra and normalization. The PCA was

TABLE 2 Main characteristics of the initial dataset.

Class Label Prognosis
Number of
samples

Healthy H Not at risk 84

Compensatory
hyperplasia

CH Not at risk 47

Atypically
hyperplasia

AH Potentially precancerous 59

Dysplasia D Potentially precancerous 56

Total 246

4 of 14 KUPRIYANOV ET AL.

 18640648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jbio.202300035 by U

niversite L
orraine, W

iley O
nline L

ibrary on [09/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



used for feature extraction [39–41]. However, unlike the
previous studies, the PCA was applied to each of the
initial spectra rather than to a set of manually
extracted spectral features. The number of principal
components in each case ranged from 2 to 50. It is
important to note that the new features derived from
PCA are uncorrelated, which is particularly important
for further classification step. In addition, several ker-
nels were tested for PCA: linear, polynomial, and
radial basis function (RBF).

StandardScaler and MinMaxScaler functions were
proposed as normalization methods. It should be also
noted that the final result of the classification can be
influenced not only by the method of normalization, but
also by the stage at which it is implemented. To find the
best combination of normalization method and stage of
its application, all the normalization methods were
applied before and after the application of PCA. The cor-
responding equations for StandardScaler (1) and Min-
MaxScaler (2) are shown as follows:

XStSc ¼X�Xmean

Xstd
ð1Þ

where X is the variable, XStSc is the value of the variable
after applying StandardScaler, Xmean is the mean value of
the variable X and Xstd is the standard deviation of X,

XMinMax ¼ X�Xmin

Xmax �Xmin
ð2Þ

where XMinMax is the value of the variable after applying
MinMaxScaler, Xmin is the minimum value of X, and
Xmax is the maximal value of X.

2.3.2 | Classification of the spectra

After dimensionality reduction step, classification of the
spectra with the optimization of hyperparameters for
each classifier was carried out using SVM [43], MLPC
[44], LDA [45], and RF [46]. All classifiers were tested in
parallel in order to select the most accurate one and cor-
responding set of hyperparameters. For SVM, which is a
binary classifier, different approaches have been also
tested for multiclass classification: one-vs.-one (OVO)
classification when each class is opposed to each class,
after which the results of all binary classifications are also
summarized and one-vs.-rest (OVR) when each class is
compared to a combination of all other classes in turn,
and then the results are generalized. A list of hyperpara-
meters is given in the Table 4.

A stratified k-fold cross validation (CV) [47] was
used to evaluate the classification performance. The
k-value was varied from 3 up to 20 in order to find the

TABLE 3 Symptoms of the skin states under study and their effects on skin properties.

Diagnosis Main symptoms Cause Layer of skin

CH Hyperproliferation of keratinocytes Increased epidermis thickness Epidermis

AH Cytological dysmaturation, disorganization of
cell layers

Local changes in cell
morphology

Epidermis

D Disorganization of cell layers, Dyskeratosis,
Parakeratosis, Elastosis

Keratinization, extensive change
of a layer organization in the
epidermis

Epidermis, dermis (elastosis only)

FIGURE 2 Average AF spectra

obtained with excitation wavelength

AF1 = 360 nm measured at

SDS1 = 271 μm with standard

deviations for healthy skin

(84 samples), atypical Hyperplasia

(59 samples), compensatory

hyperplasia (47 samples), and

dysplasia (56 samples).
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optimal value. In addition, leave-one-out cross valida-
tion (LOOCV) [47] was performed when SVM and LDA
were used for classification.

The evaluation of the effectiveness of classification
was based on two quality criteria: the multiclass classifi-
cation accuracy (Equation 3) and the error in classifying
precancerous lesions as healthy (Equation 4):

Acc¼TPCHþTPAHþTPDþTPH

NT
�100%, ð3Þ

where TPi stands for correctly classified results for class
i and NT refers to as the total number of samples.

Err¼FPAH�HþFPAH�CHþFPD�HþFPD�CH

NAHþND
�100%,

ð4Þ

where FPi�j represents misclassified results correspond-
ing to class i incorrectly predicted as class j and Ni is the
number of samples for class i.

The general scheme of spectra classification is shown
in Figure 3.

2.4 | Data fusion

The fusion of information from all the AF and DR spectra
was carried out by analyzing the results of the classification

of every of 24 groups of spectra. This approach is also
called decision fusion. The most standard method used
for decision fusion is majority voting. However, when
using majority voting it is not possible to take into account
differences in the accuracy of the original predictions,
which may have a negative impact on the final result. To
avoid this problem, two other methods were tested to com-
bine the decisions in parallel with majority voting: stack-
ing and manual optimization of weights (MO).

Another important point is that the different accuracy
of the predictions for all 24 groups of spectra, as well as
the correlation between them, leads to the fact that using
all the data at once can also reduce the final classification
accuracy. For this reason, the data were combined in
three ways: combining all groups of spectra at once
(1 result), by modality/submodality of the spectra
(8 results) and by their SDS (3 results). In addition, for
the last two cases, decision fusion was repeated again for
the new predictions obtained.

The general scheme for MO (Figure 4) includes calcu-
lation of the weights (wi) for each selected group of spec-
tra, following by the aggregation of the contributions of
all groups to the final diagnosis for each sample (Σ). The
weights were changed for all groups and their combina-
tions from 0 to 1 in steps of 0.1 after normalization of
their values to make the sum of the weights equal to
1. After summing up the contributions from each group
of spectra, a prediction was generated and the accuracy
of the prediction was then evaluated. If the classification
accuracy was lower than the best value obtained earlier
(or the error value was higher when the accuracy was
equal), the values of the weights were changed. The pro-
cess was stopped after going through all the values of
weights.

The general scheme of stacking which involves add-
ing one more classifier that is used do analyze decisions
obtained by the first step of classification as new set of
features, is shown on Figure 5. The classification and
optimization strategy is similar to the one described in
Section 3.2.

3 | RESULTS AND DISCUSSION

3.1 | Optimization of hyperparameters
for preprocessing and classification steps

The process of optimizing the hyperparameters was car-
ried out based on the accuracy of the classification. The
first step involved the selection of an optimal number of
principal components used in the study, as well as the
selection of the kernel for PCA, that provide the best
accuracy of classification.

TABLE 4 List of classification methods and corresponding

hyperparameters.

Name of the
method

List of optimized
hyperparameters

Variation of the
hyperparameters

Support vector
machine (SVM)

Kernel Linear/Polynomial
(2,3)/RBF

Regularization
parameter value

0.1–10

Decision function
type

OVO/OVR

Multi-layered
perceptron
(MLPC)

Number of hidden
layers

1–4

Size of each hidden
layer

10–100

Type of the
activation
function

Identity/logistic/
rectified linear unit
(ReLU)

Linear
discriminant
analysis (LDA)

Type of solver SVD/LSQR

Random forest
(RF)

Number of trees 10–150
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An example of a 3D distribution of the thirst three
principal components for DR spectra (SDS = 536 μm) for
all the classes is shown on Figure 6.

It can be seen that the point clouds corresponding to
each class are overlapped. This result is repeated for all
other modalities/submodalities and SDS, consequently,
no visual separation between all classes could be
achieved. The use of other combinations of principal
components also did not provide any effect, therefore it
was decided to use a larger number of principal compo-
nents for the classification. An example of the depen-
dency between the accuracy of multi-class classification
using SVMs and the number of principal components
(from 2 to 80) for DR spectra obtained at SDS2 is shown
in Figure 7.

It can be seen that when the number of principal
components used for classification is higher than 20, the
accuracy of the multiclass classification reaches a ceiling

value of about 90%. This correlation was the same for all
groups of spectra, but the number of principal compo-
nents used for classification, for which the max constant
value of accuracy was reached, varied between 20 and 30.
In addition, no improvement in efficiency of classifica-
tion was achieved by varying the kernels. Therefore, the
PCA was implemented using linear kernel in all cases.

The use of different kernels for the SVM also provided
very similar results, so the kernels that required less
computation time were used for spectrum classification
(linear kernel and RBF kernel). A similar approach
was used to choose the optimal hyperparameters for
the classifiers used.

The last step of optimization was to find the optimal
cross-validation method (LOOCV/k-fold CV) and the
optimal value of the k parameter (for k-fold CV) which
provided an optimal balance between the resulting accu-
racy and computation time. For this purpose, the value of

FIGURE 3 The main scheme of spectra classification.

FIGURE 4 The main scheme of data analysis by using manual optimization of weights.

FIGURE 5 The main scheme of data analysis by using stacking.
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parameter k was varied from 4 to 20 for all groups of
spectra. SVM (with linear and RBF kernels) and LDA
were used as classifiers, with only the most accurate
result selected for further analysis. The number of princi-
pal components used after PCA was equal to 25 in all
cases. For almost all groups of spectra, the difference
between the minimum and maximum values of the mul-
ticlass classification accuracy was less than 2.5%. For fur-
ther calculations, the value of k was chosen to be 8, since
the classification results corresponding to this value were
maximal or close to it for all groups of spectra. In addi-
tion, it does not require a long computation time, com-
pared to LOOCV.

The results of the optimization are presented in
Table 5. The use of more than one hyperparameter
value/option in the table means that the values of multi-
class classification accuracy obtained in the correspond-
ing cases differed by no more than 1%, and the required
computation time differed by no more than 10 s.

3.2 | Results of classification for
different groups of spectra

The classification of each of the 24 groups of spectra
was done by all methods in parallel and a classifier
with the best performance were chosen for each group
of spectra. All calculations were repeated 5 times to
get statistically relevant results. Average accuracy
values obtained by the different classifiers (SVM,
MLPC, DA, and RBF) for all modalities (DR and all
AF) and all SDS are shown in Figure 8 (for sake of
clarity, error bars are plotted only for standard devia-
tion values greater than 1%).

It can be seen that all the classification methods used,
except RF, showed very similar accuracy in most cases. It
can also be noted that for all SDS, the best results were
obtained for the classification of DR spectra. The multi-
class classification accuracy and percentage of potentially
precancerous lesions classified as healthy are presented
in Table 6 for all groups of spectra.

FIGURE 6 3D distribution of the first three principal

components for all four classes of spectra.

FIGURE 7 Dependence of the classification accuracy on the

number of principal components used.

TABLE 5 Optimization of hyperparameters for methods used.

Name of the
method

List of optimized
hyperparameters

Optimized
hyperparameters

Principal
component
analysis (PCA)

Number of PCs 25

Kernel Linear

Support vector
machine (SVM)

Kernel Linear/ RBF

Regularization
parameter value

1

Decision function
type

OVO

Multi-layered
perceptron
(MLPC)

Number of hidden
layers

1

Size of each hidden
layer

80

Type of the activation
function

ReLU

Linear
discriminant
analysis (LDA)

Type of solver SVD

Random forest
(RF)

Number of trees 100
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For a more detailed analysis, two best results were
selected for each SDS. The corresponding confusion
matrices are presented in Table 7.

It can be seen that for all three values of SDS the
highest multiclass classification accuracy (90.24%) and
lowest value of error in classification of PP states (0.87%)
were obtained for DR spectra, which is a significant
improvement compared to the results obtained in the pre-
vious studies [39–41]. This may be explained by the fact
that the implementation of PCA for feature extraction
without preliminary step of feature selection provides
greater efficiency in extracting important information from
the initial DR spectra which is also indirectly confirmed
by the fact that the classification accuracy of the AF spec-
tra has also increased compared to the same studies
[39–41]. According to histological criteria, higher classifi-
cation accuracy of DR spectra may relate both to a change
in the absorption properties of the skin with PP states due
to keratosis, and scattering properties of the skin with PP
lesions, due to disorganization of the cell layers.

Among the different SDS values, the best results for AF
spectra (Acc = 84.15%, Err = 6.96%) with excitation

wavelengths λ < 400 nm were obtained for SDS1 = 271 μm.
This may be due to the fact that these wavelengths have a
lower penetration depth into the skin, which affects the
quality of the spectra obtained for larger SDS values. In
addition, according to histological classification criteria,
most of the changes in skin properties due to lesions
are related with changes in the concentration of
keratin, which has a fluorescence excitation peak in the
380–400 nm range [25]. Also in cases of dysplasia, deg-
radation of collagen and elastin in the dermis can affect
the final accuracy of the classification, as collagen, elas-
tin, and their cross-links also have fluorescence excita-
tion peaks in the 360–400 nm range.

However, the best results for DR spectra (Acc = 90.24%,
Err = 0.87%) and AF spectra with an excitation wavelength
of λ ≥ 400 nm (Acc = 86.59%, Err = 6.09%) were
obtained for SDS2 = 536 μm. It can be explained by the
fact that this value of SDS provides the optimal balance
between the penetration depth into the skin and the pro-
portion of noise in the signal, as increasing SDS increases
the contribution of the signal received from the deeper
layers of the skin (including the dermis) to the resulting

FIGURE 8 Average classification accuracy obtained by different classifiers (SVM, MLPC, DA, and RBF) for all modalities (DR and all

AF) and all SDS; error bars indicate standard deviation (SD) values corresponding to five repeated calculations for each combination of

source, detector and classifier (error bars not shown for SD < 1%).

TABLE 6 Values of accuracy and

misclassification for PP states for all

modalities and sub-modalities. Group of spectra

SDS1 = 271 μm SDS2 = 536 μm SDS3 = 834 μm

Acc. (%) Err. (%) Acc. (%) Err. (%) Acc. (%) Err. (%)

DR 87.40 4.35 90.24 0.87 86.99 6.09

AF1 84.15 6.96 78.05 12.17 76.42 14.78

AF2 81.71 6.96 75.20 14.78 77.24 21.24

AF3 81.30 6.96 78.05 10.43 77.64 13.04

AF4 82.52 11.30 86.59 6.09 83.33 7.73

AF5 77.24 12.17 78.46 13.91 76.02 11.30

AF6 75.61 19.13 77.64 11.30 73.98 24.35

AF7 79.27 13.91 79.27 13.91 77.24 19.13

Note: The best results for different modalities or ways of combining the data are in bold.
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spectrum. Moreover, the results obtained for the DR
spectra collected at SDS2 are the best of all the results
obtained in this step. Consequently, this suggests signifi-
cantly changes of scattering properties of skin layers
(including the dermis) related to their morphological and
structural modifications.

It can also be noticed that in all cases, the precision
values of classification of benign classes (H and CH)
ranges from 93% to 100%, while the precision values of
classification of PP states ranges from 66% to 88%. At
the same time for the best result presented (DR spectra
for SDS2), only 1.69% of all samples corresponding to
atypical hyperplasia were classified as healthy, whereas
for dysplasia there were no such samples at all. Thus,
the number of samples corresponding to potentially
precancerous skin states that were classified as benign
or healthy was 0.8% of all samples that belong to PP
classes according to the reference classification. In
order to improve this result, all spectra were redivided
into two groups, PP and benign and then spectra pro-
cessing pipeline was repeated. The results presented in
Table 8. All results presented are consistent with the
classification of the DR spectra, as in the case of

multiclass classification, the best results were obtained
for it among both modalities and all groups of spectra.

It can be seen that in case of binary classification for
spectra obtained at SDS1 the proportion of PP classified
as benign is 0. For SDS2 and SDS3 the obtained coeffi-
cients of the confusion matrices are very similar.

3.3 | Application of data fusion methods

The next step was to combine the results from the differ-
ent groups of spectra by fusion of decisions in three ways:
fusion of decisions for all groups of spectra, fusion of
decisions according to the initial spectra modality or exci-
tation wavelength value (for AF spectra), and fusion of
decision according to SDS of the initial spectra. All
results are presented in Tables 9–11, respectively.

It can be noted that, in most cases, implementation of
MO provides the best results among all three methods for
both evaluated parameters. It can be explained by the
influence of overfitting in case of stacking and the lack of
corrections for the difference in classification efficiency
based on different groups of spectra in case of MV.

TABLE 7 Confusion matrices corresponding to the most accurate results for every SDS.

SDS1 = 271 μm

DR AF1

AH CH D H AH CH D H

AH 71.19 0 23.73 5.08 AH 66.10 0 22.03 11.86

CH 2.13 95.74 2.13 0 CH 0 100 0 0

D 17.86 0 78.57 3.57 D 28.57 0 69.64 1.79

H 0 0 0 100 H 2.38 0 0 97.62

SDS2 = 536 μm

DR AF4

AH CH D H AH CH D H

AH 88.14 0 10.17 1.69 AH 74.58 0 16.95 8.47

CH 0 93.62 2.13 4.26 CH 0 100 0 0

D 21.43 0 78.57 0 D 19.64 0 76.79 3.57

H 2.38 0 0 97.62 H 2.38 0 3.57 94.05

SDS3 = 834 μm

DR AF4

DR AH CH D H AH CH D H

AH 67.80 0 23.73 8.47 AH 66.10 0 20.34 13.56

CH 0 100 0 0 CH 2.13 95.74 2.13 0

D 17.86 0 78.57 3.57 D 26.79 0 71.43 1.79

H 0 0 1.19 98.81 H 3.57 0 0 96.43
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In addition, as in the previous case, the selection of the
best result was based on the multiclass classification
accuracy. However, the use of MO requires a much lon-
ger computation time.

Figure 9 shows the average accuracy ± SD bar graphs
allowing to compare the performance of the different clas-
sifiers (SVM, MLPC, LDA, and RF) for different strategy of
combining/choosing data for decision fusion by stacking.
It can be seen that Random Forest and SVM provided the
best performance in most cases.

The best results of decision fusion, as for the separate
classification, were obtained for DR spectra and AF spec-
tra with excitation wavelength of λ = 400 nm. In case of
the DR spectra, the confusion matrix coefficients were
identical to the ones presented in Table 4c, which corre-
spond to the classification results based on DR spectra for
SDS2 = 536 μm. The use of decision fusion for the AF

spectra gives an average improvement of 3%–5% in multi-
class classification accuracy.

The best results for fusion of decisions by group of
spectra, that were obtained by using two steps of manual
optimization of weights are presented in Table 10.

It can be seen that the precision values for all classes
increased by 5%–7% and reached 100% for benign states
compared to the results presented in Table 7. At the
same time, the error in classification of atypical hyper-
plasia as healthy tissue also increased. This was due to
the fact that the selection of the best combination of
coefficients for MO was based on the multiclass classi-
fication accuracy.

When combining the SDS classification results, the
best results (Acc = 94.31%, Err = 0.87%) were obtained
for SDS2 = 536 μm, as in the previous case. The corre-
sponding results that were obtained by using MO are pre-
sented in Table 12.

Compared to the results presented in Table 7, the
value of precision for all classes also increased by
5%–7% and reached 100% for benign states, as in the
case of decision fusion by modality. The use of MO and
stacking for decision fusion by SDS value increased the
multiclass classification accuracy by 2%–4%. At the
same time, additional step of decision fusion produced
no improvement with respect to the result obtained for
SDS2 = 536 μm.

TABLE 8 Results of binary

classification obtained using DR spectra

for every SDS.

SDS1 SDS2 SDS3

Benign PP Benign PP Benign PP

Benign 93.13 6.87 Benign 95.42 4.58 Benign 96.18 3.82

PP 0 100 PP 1.74 98.26 PP 1.74 98.26

TABLE 9 Results obtained by using decision fusion for modalities/sub-modalities.

Groups of spectra for fusion

Majority voting Stacking Manual optimization of weights

Acc. (%) Err. (%) Acc. (%) Err. (%) Acc. (%) Err. (%)

All groups 89.02 3.48 86.59 7.83 – –

DR 89.84 1.74 90.24 1.74 90.24 0.87

AF1 80.49 4.35 84.15 8.70 84.96 6.96

AF2 80.08 8.70 80.08 15.65 81.71 6.96

AF3 79.27 4.35 82.52 12.71 83.33 9.57

AF4 86.99 6.96 87.80 7.83 89.02 5.22

AF5 76.02 10.43 80.08 12.71 83.30 9.57

AF6 73.58 17.39 79.67 17.39 80.08 14.78

AF7 78.46 15.65 80.49 19.13 82.11 13.04

All DR and AF (step 2) 87.80 4.35 85.77 11.30 93.90 1.74

Note: The best results for different modalities or ways of combining the data are in bold.

TABLE 10 Classification results for all spectra after two steps

of decision fusion.

DR AH CH D H

AH 91.53 0 5.08 3.39

CH 0 100 0 0

D 17.86 0 82.14 0

H 0 0 0 100

KUPRIYANOV ET AL. 11 of 14
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For the case of binary classification, the fusion of
decisions was done in the same way as for multi-class
classification. The best results (for fusion of the second
decision fusion step) are presented in Table 13 for dis-
tances (a) and groups of spectra (b).

It can be noted that the percentage of misclassifying
the PP state as healthy is less than 1%. Moreover, the
resulting error is most likely the result of statistical error
due to the use of cross-validation. At the same time, the
corresponding value of precision, compared to the results
obtained without decision fusion, has increased and is
close to 100%.

4 | CONCLUSION

This study presents a developed and tested pipeline for
the classification of multimodal spectroscopic data
obtained from benign and precancerous skin lesions,
which includes the use of feature extraction, machine
learning and data fusion methods. The implementation
of this pipeline allowed a significant increase of the accu-
racy of multiclass classification of these lesions compared
to previous studies.

TABLE 11 Results of decision fusion by SDS.

Distance

Majority voting Stacking Manual optimization of weights

Acc. (%) Err. (%) Acc. (%) Err. (%) Acc. (%) Err. (%)

SDS1 86.18 7.83 86.18 3.48 90.24 5.22

SDS2 88.21 10.43 92.68 1.74 94.31 0.87

SDS3 82.52 13.91 85.37 6.96 89.43 6.09

Final 2 86.59 9.57 91.06 4.35 94.31 0.87

Note: The best results for different modalities or ways of combining the data are in bold.

FIGURE 9 Average accuracy for stacking (decision fusion) obtained by different classifiers (SVM, MLPC, DA, and RBF) for all ways to

combine data (by SDS, by modality and all data at once); error bars indicate SD values corresponding to five repeated calculations for each

combination of source, detector and classifier (error bars not shown for SD < 1%).

TABLE 12 Classification results (confusion matrix) based on

decisions obtained from all types of spectra.

AH CH D H

AH 91.53 0 6.78 1.69

CH 0 100 0 0

D 16.07 0 83.93 0

H 0 0 0 100

TABLE 13 Results of decision fusion for binary classification.

Benign PP

SDS1

Benign 100 0

PP 0.87 99.13

SDS3

Benign 99.24 0.76

PP 0.87 99.13
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The spectra corresponding to each group of spectra
were processed separately, followed by a one- or two-step
decision analysis. The feature extraction was made by
using PCA, after which the spectra were classified using
support vector machine, multilayer perceptron, linear dis-
criminant analysis, and random forest. The next step was
to use data fusion, which was done in three ways: combin-
ing all results at once, combining all groups of spectra by
corresponding distances, followed by combining the
results, and combining all groups of spectra by modality,
also followed by combining into one final result.

The highest accuracy of the multiclass classification
was achieved using support vector machine for the first
step of classification and manual optimization of weights
to combine all types of spectra corresponding to
SDS2 = 536 μm for the second step of classification and
was 94.41%. It can be explained by the fact that this value
of SDS provides an optimal balance between depth of
penetration into the skin and the proportion of noise in
the signal.

Among the different spectral types, the highest classi-
fication accuracy was obtained for the DR spectra for all
SDS. This observation can be explained by the fact that
for the whole spectral range the DR spectra are equally
affected by the absorption properties of internal skin
components range as well as by scattering properties,
which are influenced by pathological states of the skin.
However, this fact cannot be clearly confirmed by the list
of methods used in our study. This issue should be inves-
tigated in the following articles.
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