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BECOBOE PACIIPEAEJIEHUE IIEPUOJMNYECKIX CJIYYANHBIX
OIIIMBOK MAJION IIJIOTHOCTHU 1 NX KOPPEKTHUPVYIOIIIE KOJIbI
C BEPOATHOCTBIO OIIVBKU JEKOANPOBAHUA

JI. Xaokum, I1. K. Hac

Ynusepcumem Tesnyp, e. Teanyp, HUndua

Nzyuaercst BecoBoe pacupeesieHre NePUOUIECKUX CAYIARHBIX OMUOOK MaJION MI0T-
HOCTH B IPOCTPAHCTBE BCEX ¢-aPHBIX N-KOPTEXKEH M CpeHee YMC/I0 TAKUX OMNOOK Ha
6Jtok gytuHbl 1. IIpuBeienbl HEOOXOMMbIE U JOCTATOYHbBIE YCJIOBUS CYIIECTBOBAHUS U
TMpUMEepDI JTUHEHHBIX KOJOB, UCIPABJISIONNX TaKie OMUOKU. BhIuncieHa BepOsITHOCTD
OmmMbKY JEKOIUPOBAHUS TAKUX KOIOB /I IBOMIHOTO CUMMETPUIHOTO KAHAJIA CBSI3M.

KroueBble C/I0Ba: MamMpuys nposepry wEMHOCMU, CUHOPOMDL, NEPUOCUNECKAA CAY-
YAUHAA OUWUOKG, BEPOAMHOCTIO 0WUbKY JeK0dUPOBAHUA.

1. Introduction

Periodic random error is one type of errors which occurs in electronic control unit like
power lines, inverters, car electric, compact disc, CD ROM. This was observed by N. Lange
in 1994 [1]. This error pattern behaves in such a way that any b consecutive components are
disturbed after a gap of some fixed positions repeatedly. Linear codes capable of detecting
and correcting such errors along with their Hamming weight distribution and decoding error
probability are studied in [2, 3]. A periodic random error can be defined as follows.

Definition 1. An s-periodic random error of length b is an n-tuple whose nonzero
components are confined to distinct sets of b consecutive positions such that the sets are
separated by s positions.

In 1963, Wyner [4] observed that for low intensity disturbances, only a few components
within a burst [5] get disturbed, and he introduced the concept of low-density burst.
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We extend this idea to periodic random errors whose intensity is low and define low-density
periodic random error as below.

Definition 2. Low-density periodic random error is an s-periodic random error of
length b such that each sets of b consecutive components separated by s zeros contains at
most w, w < b, nonzero components.

Let &(s,pjw)n,q denote the set of all low-density periodic random errors in the space of
n-tuples over GF(q). For example, the following vectors are some members of &3 2/1),10,2:

0000001000, 0000010000, 0100000000, 0100001000, 0100010000,
1000000000, 1000001000, 1000010000, 0000000100, 0010000000,
0010000100, 0010001000, 0100000100, 0000000010, 0001000000,
0001000010, 0001000100, 0010000010, 0000000001, 0000100000.

In this paper, we study the Hamming weight distribution of the vectors of . pjuw)n.q-
Then we study the existence of linear codes correcting the errors from the set §(spjw)n.qg-
We denote a linear code that corrects low-density periodic random errors from the
set &(s plw),ng DY LDP (s puw) n,gRC-code. We further study the probability of decoding error
for the errors set &(spjuw)n,g OVer a binary symmetric channel. Throughout the paper, we
consider n = A(b+ s) + 1, where 0 </ < s+ band A € N.

The organization of remaining part of the paper is as follows. Section 2 gives the
Hamming weight distribution of the vectors of & pjw)n,q along with examples. Average
Hamming weight of the vectors of {(pjuw)n,q is derived. In Section 3, we obtain necessary
and sufficient conditions for existence of a LDP (4 /i) 5, RC-code followed by three examples.
Finally, we provide the probability of decoding error for the errors of £ pju)n,q Over a binary
symmetric channel.

2. Hamming weight distribution of vectors of { juw)n,q

In this section, we give the Hamming weight distribution of vectors of &(spjw)n,q and
average Hamming weight of a vector from the set {( pjuw)n.q-

Here n = A(b+ s) + [, where 0 < | < s+ b, then the maximum Hamming weight wpax
of a vector of §( pjuw)n,q 1S given by

WA, when [ =0,
Wiax = § WA+ min{l,w}, when 1<1[<Db,
wA+1), when b<I<s+b.

We first state the following lemma from [6].

Lemma 1 [6]. If \; denotes the number of sets of non-zero positions and m; the
maximum number of nonzero positions in a vector of &(s pjw)n,q that starts from ith position,

then , ,
)\_{n—z—i-l Ln—z—i—l

s+b +b
where |z | means the greatest integer < x, [x] means the smallest integer > z, and

r, if 0<r <o,
(r) =

Wandmiz Jb+~y((n—i+1)m0d(b—|—5)),

b, if b<r<b+s.

Next, we give the following Lemma to derive weight distribution of vectors of { pjw),n.q-
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Lemma 2. Let p; be the number of common nonzero positions of the errors of & pjuw)n,q
that starts from the " (i = s+ 2,..., s+ b) position with an error vector of &(s pju)n,q that
starts from the 15 position. Then p; is given by

(1) whenl=0and b—1<I<s+b p=(i—s—1)p, and

(2) when 1 <1 <b-—1: pi:{(?_s_l)ﬂil for Z,_S+2’

(t—s—1)8i1+1 for i1=s+3,s+4,...,5+b,
n—i—b+1
where ﬁz = ’75—4—[)—‘ .

Proof.

Case 1:l=0andb—-1<I<s+b

The common nonzero positions of the error pattern of § pjw)n,q that starts from the
(s + 2)™ position with the error pattern that starts from the 1% position are s + b + 1,

— 1)—b+1
2(s+b)+ 1, ..., Bss1(s +b) + 1, where 11 = [n (s+1) + —‘ This number of

s+b
common nonzero position is given by [s.1.
The common nonzero positions of the error pattern of . pjw)n,q that starts from the
(s+3)' position with the error pattern that starts from the 15 position are s+b+1, s+b+2,

—(s+3)—b+1
2(s40)+1, 2(s+0)+2, ..., Bopa(s+b)+1, Bosa(s+b)+2, where f,15 = V o W

s+b
This number of common nonzero position is given by 25, .

Continuing this, the common nonzero positions of the error pattern of & pw)mn,q
that starts from the (s + b)™ position with the error pattern that starts from the 15
position are s + b+ 1, s+b+2, ..., s+b+ (b—1), 2(s+b)+ 1, 2(s+b)+2, ...,
2(s+b)+(b—1), ..., Bsyp-1(s+b)+1, Bsyp1(s+b)+2, ..., Bsrp_1(s+b)+ (b—1), where
n—(s+b—1)—b+1

s+b

Bsrv-1 = . This number of common nonzero position is given by

(b_1>ﬁs+b71-
Thus p; = (i—s—1)Bi_1 fori=s+2,s+3,...,5s+b, where 3; = [

Case 2: 1<il<b—-1.
The common nonzero positions of the error pattern of & pjw)n,q that starts from the
(s + 2)™ position with the error pattern that starts from the 1% position are s + b + 1,

— 2)—b+1
2(s+0b)+ 1, ..., Bss1(s +b) + 1, where 11 = {n (s+2) + —‘ This number of

s+0b
common nonzero position is given by (£, 1.

If the error pattern starts from the (s + 3)™" position, the common nonzero positions
with the error pattern that starts from the 1% position, excluding the last set of nonzero
positions, are s+b+1, s+b+2, 2(s+b)+1, 2(s+b)+2, ..., Bsya(s+b)+1, Bera(s+b)+2,

here Buyy = [n—(s+2)—b+1-‘
where B0 = o :

The common positions with the last set are Agi3(s +0) + 1, Agy3(s +0) + 2, ...,
As+3(s+Db) +1 (\; are given by Lemma 1), whose number is [. Therefore, the total number
of common nonzero positions is given by 28,5 + (.

Continuing this, if the error pattern starts from the (s + b)'™" position, the common
nonzero positions with the error pattern that starts from the 1% position, excluding the last
set of nonzero positions, are s+b+1, s+b+2, ..., s+b+(b—1),2(s+b)+ 1, 2(s+b) + 2,

n—i—b+1
s+ b )
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B 2(S+b)+(b_1)7 SRR 65+b—1(5+b)+17 Bs+b—1(3+b)+27 R ﬁs-l-b—l(s_{'b)_{_(b_ 1)7

n—(s+b—1)—b+1
here 84141 = .
where Ssip-1 [ s 1D w
The last set has common positions Agip(s +0) + 1, Aeyp(s+0) +2, ..., Aspp(s+0) + 1,

whose number is [. This number of common nonzero position is given by (b —1)Bs1p—1 + (.
Thus p; = {(’L—S—l)ﬁl_l for i:S+2,

(t—s—1)Bi1+1 for i=s+3,s+4,...,5+b.
Lemma?2 is proven. m

Theorem 1. Let R?bm(j) be the total number of vectors of {( pjw),n,q, Whose Hamming
weight is j. Then:
For j = 1:

=)~ (5 L) (5) - (4o
=[5 (i £ ()0

= £ () - () - (O (7 Vs
G B G B ) R ) I Gt [ Ry I T

For j = wax:

[(s + 10N+ M -5 — 1} (g — 1)Wmax, when [ =0,
?yb|w('lUmax) = b)\<q — 1)wmax, when 1 < l < b,
[(l—b+1)b”1+bA—l+b—1](q—1)’“’ma><, when b<[<s+b,

where psy1 =1, kg =0, k; = m1 — Bi, Bi, my, and p; are given by Lemmas 1, 2.
Proof.
Case 1: j=1.
The number of error patterns of weight 1 that start from the i*® positions, where i =

=1,2,...,s+1, is given by <n111) (¢—1). But in the calculation (m?l) (¢ —1), number of

my . .
already counted nonzero components in ) (g—1)isk; =m; 1 —Bifori =1,2,3,...,s+1,

1
n—i1—b+1
here 3; = {—
where (3 s
positions in which the nonzero elements of the error pattern start from the *" position.
s+1 i ki—
Therefore, the total number of the errors having weight 1 is ) [(m ) — < 1)} (g —1)!

=1 1 1

-‘ represents the total number of complete sets of b consecutive
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For error patterns whose starting position is i = s+2,...,s-+b, all the weight 1 vectors
are already present in the first position (i.e., the b positions of each set of nonzero positions
except the last set which may be less than b components). The number of these nonzero

Bi1

components is given by ;1. Thus, , number of weight 1, need to be subtracted from

each starting position of the error pattern. So, the number of weight 1 in these positions is

i ki i—
given by the quantity (77; ) - ( ] 1) - (51 1). We have

=2 [()- ()00 £ () (5 (5o

Case 2: 2<j < w.
As above, the total number of the errors having weight j that start from the i** positions,
Az i ki _
where i = 1,2,...,s+ 1, is the quantity > {(m) — ( 1)] (g — 1)7 with ky = 0.

i=1 J J
But, for error patterns that start from positions i = s+2,...,s+b, there are some more

common vectors with the already counted error vectors that starts from the 1% position.
By Lemma 2, p; denotes the number of common nonzero components that start from
the i'" (i = s+2,...,5+0b) position which are already present in the errors that start from

the first position; (pz) (¢ —1)7 gives the number of vectors of weight j in the i*" (i = s+ 2,
J
..., S+ b) positions which are already counted in the error pattern that start from the first

ki -
position. This includes some vectors which are deleted by the term < , 1) (¢—1)’, thus the
J

term (pi_l) (¢—1)7 is added to include such already deleted error vectors, here p,,; = 1. So
J

the exact number of common vectors that need to be excluded is [(pl) — (pifl)} (g—1).
J J
Therefore, we have

o) (e £ ()6 (e

Case 3:w+1<j < Whayx — 1.

In this case, we can also similarly calculate the total number of all error vectors having
weight j and starting from the i*" position, where i = 1,2,...,s + 1, after deleting the
common vectors as the quantity

E[07)-(5)-(* (7 o e

Again, for error vectors having weight j starting from (s + 2)™ to (s + b)™ positions,
there are some more common vectors which we have calculated, as in the previous case:

K@) = (p jl)] (¢ — 1)7. Therefore,
Ryw(i) = ji K?) — (k’jl) _ ((b - Tf)@'l) (j Tiw__b 1)} (¢ — 1)+
EI0) G I O e
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Case 4: j = wWyax-

In this case, the number of error vectors with weight j is calculated, and different
formulas are found for [ =0, 1 <l <b,and b< [ < s+ b:

[(s+ 1)0* + 01 — s — 1] (g — 1)“me, when [ =0,
R?7b|,w(’UJmax) = bA(q - ].)wmax, when 1 < [ < b,
[((=b+ 1) +0*—1+b—1] (g — 1), when b<I<s+b.

Theorem 1 is proven. m

Remark 1. The values of m; and p; in [3] are given by

bA for 1<i1<s+1, )
m; = _ if =0,
bA+s—i+1 for s+2<i<s+b,
AN+l —i+1 for 1 <</,
m; = < b\ for [+1<i<s+1+1, if 1<I<b,
bA+s+1l—1+1 for s+1+2<1<s+0b,
b(A+1) for 1<i<l—0b+1,
mi=bA+1)+({(—-b—i+1) for [—b+1<i<l, it b<l<s+b,
b for 1+1<i<s+b,
pi:iﬂi—s—s; if [=0 or b<l<8+b7
P for 1<est, it 1<l<b.
ilpp—1)+1 for [+1<i<b—1,

In this paper, we consider the simplified form for m; and p; in Lemma 1 and Theorem 1,
and for b = w we get

bA, when [ =0, (b 3 ;
Wmax = § DA+, when 1< <, and ( lf Zl> ('le B 1) = 0.
b(A+1), when b<I<s+b, J

Then Theorem 1 coincides with Lemma 3.1 [3].

Example 1. Considering ¢ = 3, n = 11, s = 3, b = 2, and w = 1 in Theorem 1,
we have A\ = 2, [ = 11lmod5 =1, m; =5, mg = --- = ms = 4, psy1 = 1, psio = 2,
Bo=pP1="---=pFs=2. Then

- [0)- (- [()- (-
[0 Ols [0 Ols [0 (lo--

=5-2+2-3-240=22;

it [0)-()-( 2 o
-0t e
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H e the maximum weight is wy.x = 3. This example can be verified by using Example 4
n the next sectio

Exampl 2. Considering g =2, n =12, s =3, b = 2, and w = 1 in Theorem 1, we
=2,l=12modb5 =2, m; =6, my=5m3="---=m5 =4, psy1 = 1, psio = 2,
=..-=p4=2. Then

s 0)-Q10)- 01 - 01106
060
(010 (2 1)
-0
10-6-C7 96 1)
10-0--6)-(

3-2)-2 =124+ 5+3-2+42=25;
2—1-1 ’
Here the maximum weight is Wy = 3.

1
24+1)28 +22 - 2+2-1=11
Example 3. Taking ¢ =2, n =14, s =4, b = 3, and w = 2 in Theorem 1, we have
A=2,l=14dmod7=0,m; =mg=---=m5=06,mg=>5 my =4, pss1 =1, psyo =1,
Pst3 =2, bo=P1 =+ =P1=2, f5 =0 =1. Then
4
1

e [()- O] ()] [0+ 0)- 0)-
-0

have A
Po = b
Ry},

)-
(
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o = |(3) = () - (") o))
GG O 62 ) GG ) e
G -6) -7 )
“|(5)- (‘? (o) <o)~ (7 ) )]

w
w

A= 6-G66)-( )-a)-

(20— 2)+ (20— 4—2)- 4+ (10— 4— 1)+ (4—1—1) = 8I;
R43\4(4):(4+1)'32 +327 -4 -1 =43.

Here the maximum weight is Wy = 4.

Theorem 2. The average weight of a vector of the set § pjw)n,q 1S

Wmax Wmax

Z JRsb|w< ) Z Rsb\ ( )
where R7, (j) is given by Theorem 1.
Proof. By Theorem 1, the number of vectors of §(, pjw)n,q having Hamming weight j is

Wmax

R?,blw( /), and the total weight of all vectors of (s pjuw).n,q 1S given by Z JR! b|w( ). The ratio
gives the required average weight. m

3. Existence of LDP, ., ,RC-codes

In this section, we obtain necessary and sufficient conditions for the existence of g-ary
LDP (5 pjw),n,dRC-codes. We also derive an upper bound on the number of codewords for such
a code. We also construct examples based on the results.

Theorem 3. Every (n, k) LDP 4 pjuw)nqRC-code satisfies

Wmax

n—k>log, |1+ Z R0 )] , where Ry, (j) is given by Theorem 1.

Proof. By Theorem 1, the number of error vectors of & pjw)n,q including the zero
vector is 1 + [§spjw)ngl = 1 + Z Ry, (7). As the maximum available coset is q" % and

LDP (5 pjw),n,dRC-code corrects all such errors, we have

Wmax

q 1+ZRsb|w('):>n—k:>logq

1+ Z R?,bw(])] :
=1
Theorem 3 is proven. m

Remark 2. The maximum number of codewords of an (n, k) LDP ; pjuw)n,{RC-code is

n

q

Wmax

1+ Z Ry, 0 )

M <
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In the following theorem, we apply the well known technique used in Varshamov —
Gilbert — Sacks bound (see [7] and [8, Theorem 4.7|).

Theorem 4. For existence of an (n, k) LDP  pju)n,dRC-code, the following condition
is sufficient:

A-1
_ w—1 b—1 ) w b—1 . min{w,g} . Wmax
=5 () ( (" )<q—1>ﬂ> =" (1) a1y (1+ e >> ,
4=0 J j=0 \ J =0 J
(1)
min{w,g} g '
where g = y(I) and R™," (5) is given by Theorem 1. Here ( > (g—1) =1for g =0.

s b|w .
J=0

Proof. The proof is done by constructing an appropriate (n — k) X n parity-check
matrix H of the code. Suppose that the first n — 1 columns hq, ho, hs, ..., h,_1 are added
suitably to H. Then any (nonzero) column h,, is added to H provided that it is not a linear
combination of at most w — 1 columns among the immediately preceding b — 1 columns
together with at most w columns from each set of previous b consecutive columns which
are at gap of s columns (the last set may contain less than b columns), along with a linear
combination of at most w columns from each set of b consecutive columns which are at
gap of s columns confined to the first n — b columns (the last set may contain less than b
columns). This can be written as

g—1
(Z azlhn it Z bzlhn (s+b)— i T Z bz2hn 2(s+b)— oot Z bi)\hn—)\(s+b)—i) +

=0
. (2)
<Z a’blhj —i + Z le j'—(s+b)— + Z 612h —2(s+b)— .+ Z 5zz\’h i’ =N (s+b)— ) 3

where a;;,b;;, aij, Bi; € GF(q) such that the number of nonzero a;; is at most w — 1,
and that of b;j, ayj, B;; is at most w; j' < n—b; g = v(nmod (s + b)) = y(I), ¢ =

— y((n—b—j'+1) mod (s + b)), and X = {n—bJ.

b—1 ,
The number of coefficients a;; is Z ( , )(q —1).
J

7=0

w -1 ) min{w,g} ]
The number of coefficients b;; is (Z (b _ )(q — 1) 3 (g) (¢ — 1). So the
J J

j=0 =0
number of all possible linear combinations in the first bracket of the right-hand side (2) is

£ (05 )er) T G

The second bracket in (2) gives the total number of low-density periodic random error

in a vector of length n — b. This is given by Theorem 3 as 1 + i R™? (§). Therefore, the
J=

s b|w

total number of all the possible linear combinations of the right—hand side (2) is

s (") (z (b;1)<q—1>ﬂ‘>k_lmij§g} () a1y (1+w§*&b <>>. ®)
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Since we have at most ¢" % columns, so taking ¢"~* greater than or equal to the term

computed in (3) gives the sufficient condition for the existence of the required code. m
In the following examples, X', p}, and 3] represent the values of A, p;, and f3; respectively,
when n is replaced by n — b.

Example 4. Consider n = 11, s = 3, b = 2, w = 1, and ¢ = 3 in Theorem 4, then
A=2l=1modb =1L, N=1p,=1p . ,=10=0=0=2 08 =08 =1
Putting these values in the inequality (1), we get

1 .
S| ; 1 /9.1 ; min{w=1g=1} /7 ; 3. g
TS )B=D L X ()81 > ) B=1) (1430 Ry () | =
3=0 \J j=0\ J =0 J =1
=1-3-3(1+66) [Using Theorem 1 and Example 1] = 603.

This implies n — k > 6. Thus, we can construct a parity check matrix H of order 6 x 11,
which generates the (11,5) ternary LDP 3 2)1),11,3RC-code:

10210100100
21 0000O0O01O0O0
- 0000O0OO0O2O010O01
01012001100
001 100O0O0T1T1F©O0
| 1 001000O0T1O0 2]

It can be verified from the Error Pattern-Syndromes Table 1 that the syndromes of all the
errors are nonzero and distinct, showing that the code is a (11,5) ternary LDP 3 /1,11, 3RC-

code.
Table 1

Error Pattern-Syndrome

Error Patterns Syndromes | Error Patterns Syndromes
00 000 00 000 1 001002 20 000 02 000 2 210000
00 000 00 000 2 002001 10 000 10 000 1 221000
00 000 01 000 0 002000 10 000 10 000 2 222000
00 000 02 000 0 001000 10 000 20 000 1 021000

00 000 10 000 0 100000 10 000 20 000 2 022002
00 000 20 000 0 200000 20 000 10 000 1 011001
00 000 01 000 1 000002 20 000 10 000 2 012000

00 000 01 000 2 001001 20 000 20 000 1 111001
00 000 02 000 1 002002 20 000 20 000 2 112000
00 000 02 000 2 000001 0 00 000 01 000 000100
00 000 10 000 1 101002 0 00 000 02 000 000200
00 000 10 000 2 102001 0 01 000 00 000 200010
00 000 20 000 1 201002 0 02 000 00 000 100020
00 000 20 000 2 202001 0 01 000 01 000 200110
01 000 00 000 0 010100 0 01 000 02 000 200210
02 000 00 000 0 020200 0 02 000 10 000 100120
01 000 00 0001 011102 0 02 000 20 000 100220
01 000 00 000 2 012101 0 01 000 10 000 202010
02 000 00 000 1 021202 0 01 000 20 000 201010
02 000 00 000 2 022201 0 02 000 10 000 102010
01 000 01 000 0 012100 0 02 000 20 000 101020
01 000 02 000 0 011100 0 10 000 01 000 010200
02 000 01 000 0 022200 0 10 000 02 000 010000
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End of Table 1
Error Patterns Syndroms | Error Patterns Syndromes
02 000 02 000 0 021200 0 20 000 10 000 020000
01 000 10 000 O 110100 0 20 000 20 000 020100
01 000 20 000 0 210100 00 00 000 01 00 111111
02 000 10 000 0 120200 00 00 000 02 00 222222
02 000 20 000 0 220200 00 01 000 00 00 100111
01 000 01 0001 010102 00 02 000 00 00 200222
01 000 01 000 2 011101 00 01 000 01 00 211222
01 000 020001 012102 00 01 000 02 00 022000
01 000 02 000 2 010101 00 02 000 01 00 011000
02 000 01 000 1 020202 00 02 000 02 00 122111
02 000 01 000 2 021201 00 01 000 10 00 100211
02 000 02 000 1 022202 00 01 000 20 00 100011
02 000 02 000 2 020201 00 02 000 10 00 200022
01 000 10 000 1 111102 00 02 000 20 00 200122

01 000 10 000 2 112101 00 10 000 01 00 011121
01 000 20 000 1 211102 00 10 000 02 00 122202
01 000 20 000 2 212101 00 20 000 01 00 211101

02 000 10 000 1 121202 00 20 000 02 00 022212
02 000 10 000 2 122201 000 00 000 01 0 000010
02 000 20 000 1 221202 000 00 000 020 000020
02 000 20 000 2 222201 000 01 000 00 0 000200
10 000 00 000 O 120001 000 02 000 00 0 000100
20 000 00 000 0 210002 000 01 000 01 0 000210
10 000 00 000 1 121000 000 01 000 020 000220
10 000 00 000 2 122002 000 02 000 01 0 000110
20 000 00 000 1 211001 000 02 000 020 000120
20 000 00 000 2 212000 000 01 000 10 O 112011
10 000 01 000 O 122001 000 01 000 20 0 222122
10 000 02 000 O 121001 000 02 000 10 0 111211
20 000 01 000 0 212002 000 02 000 20 0 222022
20 000 02 000 0 211002 000 10 000 01 0 100121
10 000 10 000 0 220001 000 10 000 02 0 100101
10 000 20 000 0 020001 000 20 000 01 0 200202
20 000 10 000 0 010002 000 20 000 02 0 200212
20 000 20 000 0 110002 0000 01 000 10 100010
10 000 01 000 1 120000 0000 01 000 20 100020
10 000 01 000 2 121002 0000 02 000 10 200010
10 000 02 000 1 122000 0000 02 000 20 200020
10 000 02 000 2 120002 0000 10 000 01 001202
20 000 01 000 1 210001 0000 10 000 02 002201
20 000 01 000 2 211000 0000 20 000 01 001102
20 000 02 000 1 212001 0000 20 000 02 002101

Example 5. Consider n = 12, s = 3, b = 2, w = 1, and ¢ = 2 in Theorem 4, then
A=2,1=12mod5=2, N =2,p, ,=1,p,,,=10,=0=---=p=2, 8, =1. From
inequality (1), we get

j :1-21-3(1+24)]; 150. -
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This implies n — k > 8, which gives rise to a (12,4) binary LDP 3 2/1),122RC-code and its
parity check matrix H is given by

O OO, OO oo
SO =R OO O OO
O =R OO O o oo
_ o OO OO o oo
I T T S Sy

SO OO0 OO
SO OO O O O
[l sl sl e el Y = )
OO OO+~ O OO
OO = O = F= OO
O R O OO
— —_ OO Rk O

It can be verified like the previous one that the syndromes of all the errors are nonzero and
distinct, so the code is a (12,4) binary LDP 39/1),12,2RC-code.

Example 6. Consider n = 14, s =4, b = 3, w = 2, and ¢ = 2 in Theorem 4, then
A=21=14mod7 = 0, >\,217p{9+1 = 1,]?;4_2: 1,pg+3:2, 5(/):ﬁ1 :ﬁé:2>
By = By = Pt = P = 1. Inequality (1) gives

r= 5 (T e (S ee-n) TR (e (1 5 R )-

J §=0
=3-4"-1(1+135) = 1632.

This implies n — k > 11 which leads to a (14, 3) binary LDP 3 9 142RC-code with parity
check matrix

=

|
O O DD OO OO OO
OO DO DD OO O o O
S OO DD OO oo o
OO DD DO OO+, OOoO o
DO DD DO O RO oo
OO OO OO oo
O OO R OO OO oo
OO OO oo oo
O R O DD DO oo oo
O RH O DD DO o oo
—_ O O OO OO o oo
OO RO R PR OO0 O —
[ s T T e T e S = S S S S S R S
— OR OO, OO R —

—_

(@]
[aw]
(@]
(aw]
(a]
(a]
(a]
[a]
o

Here we can also verify that all error patterns give nonzero and distinct syndromes.
Finally, we give the probability of decoding error for a LDP ) n,RC-code over a
binary symmetric channel.

Theorem 5. Let PDg(F) be the probability of decoding error of an (n, k) binary
LDP (5 pjw)n,2RC-code on a binary symmetric channel with transition probability €, then

Wmax

PDR(E) =1~ 3 RZ,,(j)€(1 =€)/, where R}, (j) is given by Theorem 1.
=1 ’

Proof. Since the binary symmetric channel has the transition probability €, the
probability of occurring of any one of the error vector of weight j is /(1 — €)" 7. So the

Wmax . .
probability of occurring of any error vector from the set & pjw)n,q i Zl Ry, () € (1—€e)" .
j:
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Since the code corrects all such error patterns, the probability of a decoding error of the
code is PDg(F) =1 — fx R2 1 (9) d(l—e)" . m
j=1

Remark 3. For s =3, b =2, and € = 0.1, we determine the probability of decoding
error PDg(E) of binary LDP ( pju)n,2RC-codes of different lengths as follows (Table 2).

Table 2
Values of PDg(FE)
n | A| 1l | PDr(E)
101210 0.19
112 |1 0.21
12 12 |2 0.23
13123 0.29
1412 |4 0.31
151310 0.33

We find that the probability of decoding error of LDP , pju) n,sRC-code increases as the
length of the code increases. So a smaller length code is more efficient.

4. Conclusion

This paper derives the weight distribution of low-density periodic random errors. Then
necessary and sufficient conditions for the existence of linear codes that correct such errors,
along with the error decoding probability of the codes, are presented. It can be interesting
to explore some more systematic methods by which we can construct such codes. We can
also investigate array code or cyclic code instead of linear code that can deal with such
errors.

5. Acknowledgement

The first author is supported by JRF fellowship from Council of Scientific and Industrial
Research, India (File No. 09/796(0085),/2018-EMR-I).

REFERENCES

1. Lange N. Error correcting codes on periodically disturbed data channels. Proc. IEEE Intern.
Symp. Inform. Theory, Trondheim, Norway, 1994, p. 33.

2. Das P. K. Codes on s-periodic random errors of length b. Palestine J. Math., 2014, vol. 3, no. 2,
pp- 168-174.

3. Das P. K. and Haokip L. Correction and weight distribution of periodic random errors. Science
& Technology Asia, 2021, vol. 26, no. 4, pp. 38-47.

4. Wyner A. D. Low-density-burst-correcting codes. IEEE Trans. Inform. Theory, 1963, vol.9,
no. 2, p.124.

5. Fire P. A Class of Multiple-error-correcting Binary Codes for Non-independent Errors. Stanford
University, 1959. 104 p.

6. Das P. K. and Haokip L. Periodical burst error correcting codes with decoding error probability.
Discr. Math. Lett., 2022, vol. 8, pp. 49-56.

7. Sack G. E. Multiple burst error correction by means of parity-checks. IRE Trans. Inform.
Theory, 1958, vol.4, no. 4, pp. 145-147.

8. Peterson W. W. and Weldon E. J. Error Correcting Codes. 2nd ed. Cambridge, Massachusetts,
MIT Press, 1972.



