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Abstract: A comprehensive study was performed of the deformation and temperature behavior
during quasi-static tension, as well as the peculiarities of accumulation and dissipation of energy
during plastic deformation. Microstructural analysis at the pre-fracture stage of pure titanium and
Ti-45Nb alloy in the coarse grain (CG) and ultrafine-grained (UFG) states was also conducted. It
was shown that substructural and dispersion hardening leads to a change in the regularities of
dissipation and accumulation energies during deformation of the samples of the pure titanium and
Ti-45Nb alloy in the UFG state. Some features of structural transformations during deformation of
the pure titanium and Ti-45Nb alloy samples in the CG and UFG states were studied. A band and
cellular-network and fragmented dislocation structure was formed in the case of the CG state, while
large anisotropic fragments were formed in the UFG state, thus specifying a local softening of the
material before fracture.

Keywords: Ti-, Nb-based bioinert alloys; ultrafine-grained state; severe plastic deformation;
microstructure; tensile test; mechanical properties; true stress-strain curves; accumulation and
dissipation energies; infrared thermography; transmission electron microscopy

1. Introduction

The development of modern technologies imposes ever-increasing requirements for
improving the functional properties of new structural materials. Currently, titanium and
titanium-niobium alloys are the key materials and, in many cases, non-alternative materials
for strategic industries such as aircraft and rocket engineering, nuclear power engineering,
shipbuilding, medicine, food and chemical industries, electronics, etc. [1–3].

In medical applications, the materials widely used for manufacturing implants are
“pure” α-titanium (commercially pure VT1-0, VT1-00, Grade 1, 2) and (α + β)-medium-
strength titanium alloys (Ti–6Al– 4V, Ti–6Al–7Nb, and Ti–6Al–2.5Fe), whose elastic modulus
is in the range of 100–120 GPa, which is much higher than the elastic modulus of the cortical
bone tissue (10–40 GPa) [2–11]. According to the literature analysis, a promising direction
in medical material science is the development of β-titanium alloys with a low modulus of
elasticity close to that of a bone. Doping of titanium with niobium at a concentration of
40–45 wt.% leads to stabilization of the β-phase with a bcc crystal lattice, as well as to a
decrease in both the martensitic transformation temperature and the elastic modulus to
50–65 GPa [11,12]. At the same time, the widespread use of “pure” titanium and Ti-(40–45)
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wt.% Nb alloys in medical practice is limited by insufficiently high strength properties,
such as tensile strength and yield strength, hardness, etc. [13,14]. The yield strength of
“pure” titanium and the Ti-45 wt.% Nb alloy is 300 and 380 MPa respectively, and their
ultimate strength is 400 and 650 MPa [15,16] that is lower than the level of mechanical
properties of medium-alloyed titanium alloys for medical applications, such as Ti-6Al-4V,
Ti-3Al-5Mo-5V.

One of the ways to solve this problem is the use of severe plastic deformation (SPD) [17].
During SPD, ultrafine-grained (UFG) or nanostructured (NS) states are formed in metallic
materials. This leads to a significant increase in structural strength without additional
alloying and allows to solve the problem of increasing the mechanical properties [18–24].

Over the past decades, significant efforts of researchers in many countries have been
directed to studying the microstructure and properties of NS and UFG materials [17–30]. A
significant difference in the physical and mechanical properties of UFG and NS materials
from coarse-grained (CG) materials is associated with the features of their microstructure,
namely, with a large volume fraction of non-equilibrium grain boundaries, a high concen-
tration of point and linear defects at near grain boundaries, as well as with a high density
of dislocations [31]. The large number of investigations devoted to the study of “pure”
titanium (commercially pure VT1-0, VT1-00, commercially pure titanium Grade 1, 2) have
shown that the mechanical properties of UFG titanium correspond to medium-alloyed
titanium alloys and may replace them. However, despite the large number of publications
in this area, intensive studying of UFG metals is still ongoing.

Relatively new for medical applications are Ti-(40–45) wt.% Nb alloys, which have
been studied to a fairly lesser extent [32–35]. This is especially true for the Ti–45 wt.% Nb
alloy in the UFG state, since many issues related to the regularities of structure formation
for titanium-based alloys with a stabilized low-modulus β-phase under various types of
thermal and deformation effects remain scarcely understood and require further systematic
analysis.

When developing designs and products for medicine and engineering, it is necessary
to analyze the processes of plastic deformation and fracture. It is known that the defor-
mation and fracture of materials are characterized by an increase in the temperature of
the plastically deformed material that determines the thermoplastic effect [36]. Energy
dissipation during material deformation is accompanied by the transformation of me-
chanical energy into thermal energy generated by the processes of dislocation motion and
annihilation, as well as into the energy of plastic deformation [37,38].

The infrared (IR) thermography [39] has been recognized as an attractive method
for studying and analyzing the processes of heat generation under deformation. This
technique allows for remotely measuring surface temperature of materials under various
conditions and studying the heat generation processes caused by energy dissipation during
deformation [40–55].

At the same time, it should be noted that peculiarities of analyzing deformation heat
generation in UFG metals by means of IR thermography have not been well reflected in the
literature [45–47].

A deeper review of the world publications in the field is beyond the scope of this
paper. However, it is worth noting the works [37,38,40,44,45,48,49] which served as a
start point for this research. In the above-mentioned publications, it was shown that the
method of IR thermography allows efficiently studying the regularities of the evolution
of defects in the structure of the material. In [49], the evolution of temperature patterns
on the surface of deformable metals during various types of loading was investigated.
Respectively, the formation of shear bands at various stages of deformation in the absence
of external signs of deformation was revealed to show that energy accumulation and
dissipation occur nonlinearly and depend on loading conditions. At the same time, the
studies of deformation processes by IR thermography have been carried out mainly on
steels, aluminum, magnesium, and titanium alloys in the CG state [50–55], and the number
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of works in which the processes of deformation heat generation in UFG metal materials
have been studied by using the IR thermography method is relatively small [45–47,56,57].

The peculiarities of temperature distributions during deformation under quasi-static
stretching of samples of bioinert alloys VT1–0 titanium, Zr–1Nb and Ti–45Nb in CG and
UFG states, including those with structural deviations from “typical samples”, were studied
elsewhere in order to identify thermal precursors of deformation and destruction [56]. It
was found that the material temperature patterns during deformation and time depen-
dences of the maximum temperature on the sample surface is different for each alloy. They
depend on alloy structural state, mechanical characteristics, the presence of structural de-
fects, as well as on alloy thermal properties. It was shown that the presence of macro-defects
in samples of VT1-0 titanium, Zr-1Nb, and Ti-45Nb alloys in CG and UFG states, accom-
panied by reduced strength characteristics, affects the development of deformation and
thermal processes in deformable samples. This phenomenon can be effectively visualized
by means of IR thermography.

In the recent work [57], the features of deformation under quasi-static stretching
of Zr-1Nb alloy samples in CG and UFG states, as well as the distribution of relative
deformations and evolution of temperature were studied by digital image correlation and
IR thermography methods. The estimation of energy accumulation and dissipation under
tension was carried out taking into account the experimental data on thermal processes in
the test samples. It has been shown that the differences in the stages of deformation and
temperature evolution, as well as the distribution of relative deformations εxx, εyy, εxy in
the work zone during stretching of Zr-1Nb alloy samples in the CG and UFG states, are
associated with substructural hardening of the matrix phase α-Zr under SPD.

A drawback of the studies above is the need to study the microstructure, that is formed
during deformation loading, and to establish the relationship between the parameters of
the deformation structure and the physical and mechanical characteristics of the materials
during stretching.

The aim of the present work is to comprehensively analyse the deformation and
temperature evolution of alloys under quasi-static tension, as well as the patterns of energy
accumulation and dissipation during plastic deformation. The microstructure features after
deformation at the pre-fracture stage of VT1-0 titanium and Ti-45Nb alloy in the CG and
UFG states have also been investigated.

It should be noted that the novelty of the present work is in the development of a
novel approach based on the analysis of deformation, temperature curves and microstruc-
ture features in the “neck” formation zone at the stage of pre-fracture. Such approach
has allowed to investigate the influence of the UFG structure on the deformation and
temperature processes during tension and identify the features of the microstructure after
deformation of titanium and Ti-45Nb alloy. This allows a better understanding of the
physical mechanisms of deformation and fracture of UFG materials.

2. Materials and Research Methods

Commercially pure titanium (99.58 Ti, 0.12 O, 0.18 Fe, 0.07 C, 0.04 N, 0.01 H wt.%) in
the UFG state, as well as the Ti-45 wt.% Nb (Ti-45Nb) alloy in CG and UFG states, were
investigated. The UFG state in pure titanium and Ti-45Nb alloy was formed by using the
combined SPD method, which included the abc-pressing with multi-pass rolling followed
by pre-recrystallization annealing at 300 ◦C [25]. To form the CG state, the recrystallization
annealing of the UFG samples at 800 ◦C was used.

The uniaxial tensile mechanical tests of flat samples with a constant strain rate of
0.01 s−1 were performed on an Instron VHS40/50-20 test machine (Instron European
Headquarters, High Wycombe, UK). The FLIR SC7700M (FLIR Systems, Nashua, NH, USA)
thermal imaging system was used to measure sample surface temperature, as well as to
evaluate sample size and appearance of a deformation “neck” directly on IR thermograms.
This allowed to obtain the temperature ∆T(εtrue) and true deformation σtrue(εtrue) curves
and determine the work of plastic deformation Ap(εtrue), the specific amount of the heat
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dissipated during deformation (Q), and the energy stored during deformation (Es). The
respective calculations were described in [57].

The total specific work of deformation was estimated using the true strain curves as

A =
∫ εmax

0
σtruedεtrue, (1)

where εmax is the maximum deformation of the sample before fracture.
The plastic deformation work (Ap) is defined as

Ap = A − Ae, (2)

where A is the total mechanical deformation work, and Ae is the elastic deformation work.
The specific quantity of the heat dissipated during deformation (Q) was estimated

using the parameters estimated thermographically:

Q = c
m
V

∆t, (3)

where c is the heat capacity of the sample material, m is the sample mass, V is the sam-
ple volume, and ∆T is the average temperature change on the sample surface under
deformation.

The energy stored during deformation (Es) is defined as

Es = Ap − Q. (4)

The microstructure and the phase composition of the samples in the CG and UFG
state, as well as under the plastic deformation, were studied using transmission electron
microscopy (JEOL JEM 2100, JEOL Ltd., Akishima, Tokyo, Japan). The average size of
structural elements (grain, subgrain, fragment) was determined by the secant method [58].

3. Results and Discussion

Figure 1 shows the bright-field (BF) transmission electron microscope (TEM) images
with corresponding selected area diffraction (SAD) patterns, as well as the dark-field (DF)
TEM images of the microstructure of the pure titanium and Ti-45Nb alloys in the CG and
UFG states. A typical microstructure of the titanium in the initial state has a coarse-grained
structure with equiaxed grains. Randomly located dislocations are observed in the body of
the grains (Figure 1a). The identification of the SAD pattern (Figure 1a, inset) revealed the
presence of an hcp lattice corresponding to titanium in the α modification. The average
grain size was 20 µm.

In the CG Ti-45Nb alloy, the microstructure is represented by matrix subgrains of the
β-phase (Figure 1e), and the dispersion-strengthened nanosizedω-phase. Identification of
the SAD patterns (Figure 1e, inset) shows the presence of high intensity reflections from
the main phase of the solid solution of titanium and niobium (β-phase with a bcc lattice).
Formation of the β-phase in the Ti-45Nb alloy is caused by complete stabilization of the
bcc crystal lattice due to alloying with the use of a high concentration of an isomorphic
stabilizer (niobium) as a result of the α (hcp lattice)→β (bcc lattice) transformation and
suppression of the martensite transformation at temperatures below the polymorphic phase
transition [59]. A distinctive feature of microdiffraction (Figure 1e, inset) is the appearance
of a group of extra reflections of low intensity, which are characteristic of the ω-phase
(hp-lattice).
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Figure 1. Microstructure of the pure titanium (a–d) and Ti-45Nb alloy (e–h) in the CG (a,e) and UFG
states (b–d,f–h): (a,b,e,f)—the BF TEM images with corresponding SAD patterns; (d,h)—the DF TEM
images. The arrows show the reflections from the identified phases and the phases themselves.

In the DF image obtained in the reflection for theω-phase (shown by the arrow in the
inset, Figure 1e), nanosized particles of the ellipsoidal shape of theω-phase are observed
in the volume of the β-grain. The average grain size of the β-phase was 45 µm, and the
segregation of the ω-phase was 0.015 µm (Figure 1e). The presence of the ω-phase is
typical for β-titanium alloys. This is due to heat and deformation treatment (conditions
at temperatures above the polymorphic transformation), mainly in the regions depleted
in the β-stabilizer, niobium. In this case, the β→ω transformation occurs as a result of a
non-diffusion mechanism, in which the adjacent atomic planes of the BCC lattice of the
β-phase are partially shifted in opposite directions <111> due to the shift [60]. Formation
of precisely the ellipsoidal shape of the particles in theω-phase is associated with a small
degree of mismatch between the crystal lattices of theω- and β-phases [61].

SPD leads to grain refinement and to formation of a grain–subgrain structure in
titanium and Ti-45Nb alloy. In the BF and the DF images, there are many extinction con-
tours, which are localized mainly along the boundaries of the subgrains and the fragments
(Figure 1b,d,f,h shown by arrows). The observed azimuthal smearing of reflections in-
dicates a high level of internal residual stresses. The SAD patterns (Figure 1g) show
the large number of point reflections arranged along circles with typical azimuthal blur,
indicating presence of both the high-angle and the low-angle misorientations at the bound-
aries of subgrains and grains. A microdiffraction analysis of the pure titanium in the
UFG state confirmed the presence of the α-Ti phase (hcp lattice). The average size of
structural elements of the UFG titanium (grains, subgrains, and fragments) was 0.2 µm.
The identification of the SAD pattern for the Ti-45Nb alloy in the UFG state as well as
the groups of reflections from three phases were revealed as follows: the high inten-
sity reflections from a solid solution of titanium and niobium (β-phase with a bcc lat-
tice), the low intensity reflections from a non-equilibrium α-phase (hcp-lattice), and the
reflections from the ω-phase (ph lattice). As a result of SPD, the α-phase is formed
according to the β → α mechanism at the β/β grain boundaries and on the crystal
structure defects, the further growth of which occurs on the steps and protrusions of
the grain boundaries or according to the ω → α mechanism [62]. According to the
ω → α transition, the α-phase appears due to the diffusion of β-stabilizers from the
regions with the already isolatedω-phase, or it is formed at the interphase coherent β/ω-
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boundary [63]. The X-ray spectral microanalysis revealed the presence of subgrains of
the β-phase with a high content of niobium, close to the initial state (38–40 wt.%), and
subgrains of the α-phase with a low content of niobium (4–10 wt.%). The average size of
the structural elements of the β-phase, α-phase, and ω-phase in the UFG Ti-45Nb alloy
was 0.2 µm, 0.05 µm, and 0.015 µm, respectively.

The data obtained for alloys in the CG and UFG states by applying the microscopy
analysis are presented in Table 1.

Table 1. Structural parameters and phase composition in pure titanium and Ti-45Nb alloy in the CG
and UFG states.

Materials/State D, µm Phase Composition, Type Lattice

pure Ti (CG state) 20 α- phase Ti
(hcp-lattice)

pure Ti (UFG state) 0.2 α- phase Ti
(hcp-lattice)

Ti-45Nb alloy (CG state) 45

0.015

β-phase (Ti,Nb)
(bcc-lattice)
ω-phase Ti
(hp-lattice)

Ti-45Nb alloy (UFG state) 0.2

0.015

0.05

β-phase (Ti,Nb)
(bcc-lattice)
ω-phase Ti
(hp-lattice)
α-phase Ti

(hcp-lattice)

Figure 2 shows the true strain σtrue(εtrue) curves obtained by considering the neck
formation and temperature curves T(εtrue) for pure titanium and Ti-45Nb alloys in the CG
and UFG states, and assuming the strain hardening coefficient θ(εtrue) = dσtrue/dεtrue. For the
investigated alloys, there is a significant increase in the true flow stress in the area of neck
formation in the curves σtrue (εtrue) (Figure 2a). The curve σtrue(εtrue) for CG titanium has an
ascending parabolic section, which turns into a descending section with the θ coefficient
equal to 5 GPa (Figure 2b, curve 1). In the curves T(εtrue) during the deformation of CG Ti,
a short stage is observed with a constant temperature until εtrue~ 0.01 followed by a linear
increase of up to about 45 ◦C before fracture (Figure 2c, curve 1).
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The main distinguishing feature of the deformation behavior of UFG titanium is the
temperature constancy until εtrue~0.04, indicating its ability to effectively store thermal
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energy during deformation. With further deformation of UFG Ti, the temperature rises
rapidly and reaches ∆T~50 ◦C before fracture in the neck formation zone, which is accom-
panied by an inflection in the ∆T(εtrue) curve (Figure 2c, curve 2). At the same time, for
UFG Ti, the θ coefficient before fracture sharply becomes negative, down to (−10) GPa,
thus indicating local softening of the material before fracture (Figure 2c, curve 2).

A different picture is observed during plastic deformation of the Ti-45Nb alloy. In this
case, regardless of the structural state, a stage with a constant temperature until εtrue ~0.05
is observed, thus proving a greater influence on the deformation and temperature behavior
of the dispersion hardening by nanoparticles of theω-phase, compared to the substructural
hardening of the alloy. Above this stage, the temperature grows up sharply, and before
destruction ∆T reaches ~40 ◦C for both the CG and UFG states (Figure 2c, curves 1, 2). In
addition, the coefficient θ before the destruction of the Ti-45Nb alloy becomes negative,
and it is equal to (−1.5) and (−20) GPa for the CG and UFG states respectively (Figure 2b,
curves 1, 2).

Figures 3–6 show the typical IR thermograms images of the thermal distributions
obtained by IR thermography during tension of the samples of the pure titanium and
Ti-45Nb alloys. It can be seen that during deformation of the pure titanium samples in the
CG state in the elastic region, the deformation bands appear in the samples as the sources of
heat generation. Their direction corresponds to the highest shear stresses. The generation
of the deformation and thermal bands and their development determines location of the
defects. The angle of inclination of the bands with respect to the direction of the force
during deformation is close to 45◦. The deformation and thermal bands divide the sample
into blocks. Inside the bands, the metal is in a plastically activated state, whereas in the
outer region, the metal operates in the elastic region. As the flow stress increases, the bands
width increases. This effect is accompanied by a smooth increase in the sample temperature
and the formation of deformation zones.
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11—ε = 0.215; 12—ε = 0.225; 13—ε = 0.235; 14—ε = 0.24.
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2—ε = 0.057; 3—ε = 0.06; 4—ε = 0.062; 5—ε = 0.064; 6—ε = 0.065; 7—ε = 0.066; 8—ε = 0.067;
9—ε = 0.068; 10—ε = 0.069; 11—ε = 0.07; 12—ε = 0.073; 13—ε = 0.075; 14—ε = 0.08.

At the stage of plastic flowing, the deformation centers first increase in size then unite
and develop into the form of bands throughout the sample. At maximum exposure in
the sample’s weakest place, a pronounced decrease in the cross section occurs to form the
neck. Further deformation and the greatest increase in temperature occur in this zone of
the sample, and the destruction occurs mainly along the horizontal plane (Figure 3). When
the titanium transits into the UFG state, deformation processes become much faster. In
the UFG state, the neck in the deformation of the pure titanium is less pronounced, and
the destruction of the samples occurs mainly in a plane close to 45◦ with respect to the
direction of the force applied to the sample (Figure 4).

The IR thermograms for the Ti-45Nb alloy in the CG and UFG states indicate that
larger deformation centers are generated during the deformation of the samples to serve as
sources of heat release. For the Ti-45Nb alloy in the CG state, the width of the deformation
bands increases as the flow stress increases, being accompanied by a gradual increase in
temperature and the formation of deformation centers, which first increase in size, then
unite and develop in the form of a main band. Further deformation as well as the maximum
increase in temperature and destruction of the CG alloy occur in the area of the origin of
the main band without formation of a neck (Figure 5). At the same time, for the Ti-45Nb
alloy in the UFG state, the generation and development of deformation centers proceed
much faster, and, before fracture, a sharp jump in temperature is first observed. Afterwards,
instantaneous destruction of the sample occurs (Figure 6).

Figure 7 demonstrates the relationship between the true deformation and the energy
released during deformation of the pure titanium and the Ti-45Nb alloys in the CG and
UFG states, namely, the specific work of plastic deformation (Ap), the amount of released
heat (Q), and the energy stored during plastic deformation (Es). The limiting specific work
of plastic deformation was 110 MJ/m3 and 95 MJ/m3 for pure titanium and Ti-45Nb alloy
in the CG state respectively, and 85 MJ/m3 and 48 MJ/m3 for these alloys in the UFG state
(Table 2). Based on the comparison of the presented dependences, one can conclude that Ap
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for the alloys in the CG state is higher than in the UFG state that is caused by their higher
plasticity (Figure 1a).
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Table 2. Amount of specific energy released during uniaxial tension in the pure titanium and Ti-45Nb
alloy in the CG and UFG states.

Materials Ap, MJ/m3 Q, MJ/m3 Es, MJ/m3

pure Ti
(CG state)

110 57 53

pure Ti
(UFG state)

85 60 25

Ti-45Nb alloy
(CG state)

95 40 55

Ti-45Nb alloy
(UFG state)

48 32 16

Here, Ap is the energy of plastic deformation, Q is the heat energy released during deformation, and Es is the
energy stored during deformation.

The analysis of the dependences above shows that the energy Q is different for pure
titanium and Ti-45Nb alloys in both states. Thus, for CG Ti, the energy released due to the
thermoplastic effect is about 50% of the Ap value and amounts to 57 MJ/m3 (Table 2). The
remaining 50% of the energy (53 MJ/m3) is stored by the metal.

At the same time, for pure titanium in the UFG state, the Q released as a result of
deformation is uneven at different stages of deformation. At the initial stage of deformation,
until εtrue ~0.04, almost 100% of Ap is stored by the material and turns into the internal
energy. Then the dependencies Q(εtrue) and Es(εtrue) are almost linear, and before fracture
they experience a sharp jump. In this case, the value of Q for the UFG titanium is ~70% of
Ap (60 MJ/m3), and the remaining ~30% of the energy (25 MJ/m3) is stored by the metal
(Figure 7, Table 2).

A different picture is observed during plastic deformation of the Ti-45Nb alloy, both
in the CG and in the UFG states. At the initial stage of deformation of Ti-45Nb in the CG
and UFG states until εtrue ~0.05, almost the whole energy Ap is stored by the alloy. This
should apparently be assigned to the effect of dispersion hardening by particles of the
ω phase with the formation of a new α-phase and substructural hardening of the matrix
β-phase. Before the fracture of the CG Ti-45Nb alloy, Q increases sharply reaching 40% of
Ap (40 MJ/m3). The remaining 60% of the energy (55 MJ/m3) is stored by the material.

In the UFG Ti-45Nb alloy, Q increases abruptly and reaches 32 MJ/m3 that is about
70% of Ap. Accordingly, Es for the UFG Ti-45Nb alloy drops sharply and amounts to ~30%
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of Ap and is 16 MJ/m3 respectively (Figure 7, Table 2). This indicates a certain grade of
softening of the UFG Ti-45Nb alloy before fracture.

Figures 8–11 show the microstructure of the studied alloys in the CG and UFG states at
the pre-fracture stage in the region of the neck formation. At this stage, the CG microstruc-
ture of pure titanium contains a band substructure (Figure 8a,b) consisting of a set of
quasi-parallel boundaries of different lengths. The bands have cross-sectional dimensions
of 0.2–0.6 µm, whereas their longitudinal dimensions reach 1 µm and more. The TEM
images show a high density of bending contours of various shapes, and there are many sep-
arate unformed or incompletely collapsed dangling boundaries, which are characterized by
multidimensional misorientations (Figure 8c,d). Between the subboundaries in the bands,
a high density of dislocations is observed, forming a cellular-network dislocation structure
(Figure 8c,d). This substructure can be a result of the accumulation of the dislocation charge
in the bands and the occurrence of local long-range stresses, causing a distortion of the
crystal lattice due to high dislocation density and strong slip heterogeneity [41].

Before the fracture of UFG titanium, the bands seem to be predominant in the mi-
crostructure. The size of the resulting bands in the cross section slightly decreases and
drops to 0.3–0.5 µm, whereas their length reaches 1 µm (Figure 9a,b). The bands are
formed by collective rearrangement of dislocations with formation of the misorientation
boundaries parallel to the subgrain boundary. Triple junctions of grains, that are significant
stress concentrators, can also serve as a source of deformation bands. The formation of
strain localization bands is the result of relaxation of internal stresses, which arise near
the boundaries of fragments and subgrains. Inside, the bands are filled with the regions
having a cellular-network dislocation substructure, predominantly with multidimensional
misorientations.
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Figure 9. Microstructure of pure titanium in the UFG state before fracture in the neck area: (a,c)—
the BF TEM images with the SAD patterns; (c,d)—the DF TEM images. Band structure with a
cellular-network dislocation substructure (a,b), large anisotropic fragments with a cellular-network
dislocation substructure (c,d).
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Figure 10. Microstructure of the Ti-45Nb alloy in the CG state before fracture in the neck area:
(a,b,d,e)—the BF TEM images with the SAD patterns; (c,f)—the DF TEM images taken in reflections
of ω- and β-phases. Band fragments (a–c) with a cellular-network dislocation substructure (d),
fragmented substructure (e,f). Arrows show reflections from identified phases and phases.
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Figure 11. Microstructure of the Ti-45Nb alloy in the UFG state before fracture in the neck area:
(a,c)—the BF TEM images with the SAD patterns; (b,d)—the DF TEM images taken in (b) α-phase
reflection and (β +ω)-phase reflection. Fragmented substructure (a,b), large anisotropic fragments
with a cellular-network dislocation substructure (c,d). Arrows show reflections from identified phases
and phases.

It is worth noting that, in comparison with the CG titanium, in the UFG state, along
with the band structure, one can also observe anisotropic fragments, i.e., local large volume
regions with multidimensional misorientation boundaries (Figure 9c). These areas are
represented by a substructure with dislocation walls which are formed due to localization
of the dislocations. In the DF images, anisotropic fragments with size of 0.3–0.5 µm
are revealed in the indicated areas (Figure 9d). Formation of the anisotropic fragments
due to the coalescence of subgrains may indicate a low-temperature deformation return
occurring when a critical fragmented structure is reached as a mechanism for relaxation of
the accumulated internal stresses [31].

Before fracture, the structure of the Ti-45Nb alloy in the CG state is rather hetero-
geneous (Figure 10). Two types of structures are formed. First, the areas with band
(Figure 10a–d) and fragmented structures (Figure 10e,f) are observed. An increase in the
number of locally acting slip systems, as a rule, causes the appearance of a band struc-
ture [31,64,65]. The average transverse size of the bands is 0.8 µm, and the longitudinal
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size is 1.2 µm. A cellular-network dislocation substructure is formed inside the bands
(Figure 10b). It should be noted that a cellular-network dislocation substructure is charac-
terized by a fairly uniform distribution of dislocations.

Another type is a fragmented structure, which is formed as a result of further devel-
opment of the band structure. With increasing magnitude of local internal stresses, the
band splits into fragments, and a dislocation cellular-network structure with misoriented
volumes is formed inside [31]. As the deformation increases, the density of dislocations
in the subboundaries increases. Simultaneously, they become narrower, and fragments
with an average size ~0.5 µm are formed. These areas of the substructure are separated by
imperfect dislocation boundaries of dislocation clusters accompanied by the presence of a
large number of stress concentrators, including precipitates of the ω-phase inside the grain.

In the Ti-45Nb alloy in the UFG state, the microstructure at the pre-fracture stage
is of a predominantly fragmented character with low-angle and high-angle boundaries
(Figure 11a,b), like in the initial UFG state. Note that the microstructure contains matrix
subgrains of the β-phase and grains of the α-phase (along the boundaries and at the joints),
as well as segregations of particles of theω-phase inside the β-grain. The formation of a
predominantly fragmented structure may be due to dispersion strengthening by particles
of other phases [31]. At the stage of pre-fracture in the UFG Ti-45Nb alloy, as well as in
the UFG titanium, the appearance of large (0.9–1.2 µm) anisotropic fragments is observed,
inside which a cellular-network dislocation substructure is formed (Figure 11c,d). A spe-
cific feature of this structure is a high density of bending contours of various shapes, as
well as the patchy contrast and abundance of boundaries (not formed or not completely
fractured) with a discrete and continuous set of misorientations [31]. It should be noted
that the process of destruction of UFG metals is greatly influenced by their initial defect
structure (cells, fragments), grain structure, precipitates at their boundaries and subbound-
aries, as well as by the grain junctions, internal stresses from boundaries and grain size
distribution [31,64,65].

The data obtained as described above was used to compile a classification of the
substructures formed during tension of the studied alloys in the CG and UFG states
(Table 3).

Table 3. Types of substructures formed under uniaxial tension in the pure titanium and Ti-45Nb alloy
in the CG and UFG states.

Materials/State Pure Ti
CG State

Ti
UFG State

Ti-45Nb Alloy
CG State

Ti-45Nb Alloy
UFG State

Type of
substructure

band
structure

cellular-network
dislocation

substructure

band
structure

cellular-network
dislocation

substructure

anisotropic
fragments

band
structure

cellular-network
dislocation

substructure

fragmented
structure

fragmented
structure

cellular-network
dislocation

substructure

anisotropic
fragments

The main distinguishing feature of structural transformations of the pure titanium
samples and Ti-45Nb alloy in the UFG state before fracture, in comparison with the CG
state, is the formation of large regions with a cellular-network dislocation substructure and
anisotropic fragments. At the same time, during the deformation of the investigated alloys
in the CG state, the band and fragmented structures are mainly formed. The formation
of large anisotropic fragments also takes place, indicating a local softening of the studied
alloys before their fracture.

Thus, the results above indicate that substructural and dispersion strengthening
and the formation of the α-phase have a significant influence on the deformation and
temperature behavior of the pure titanium and the Ti-45Nb alloy, as well as the patterns
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of energy accumulation and dissipation during plastic deformations and the type of the
emerging substructure during deformation.

4. Conclusions

A comprehensive analysis of the microstructure and deformation, as well as the
corresponding temperature dependences, demonstrates a significant influence of the UFG
state on the regularities of energy accumulation and dissipation during plastic deformation
of pure titanium and Ti-45Nb alloy.

It has been found that substructural hardening in UFG pure titanium under SPD leads
to changes in deformation, thermal behavior, and energy accumulation and dissipation
during deformation. The thermal and energy curves for UFG pure titanium have a plateau
(stage up to εtrue ~0.04, at which the total energy of plastic deformation is stored by the
metal.

The dispersion strengthening by the ω-phase particles and the α-phase formation in
the UFG Ti-45Nb alloy reduces the influence of the UFG structure on the deformation and
thermal behavior, especially at the initial stage of deformation. At this stage, up to εtrue
~0.05, almost the total energy of plastic deformation is stored by Ti-45Nb in both the CG
and the UFG states.

The main distinguishing features of structural transformations during deformation of
samples of pure titanium and Ti-45Nb alloy in CG and UFG states were discovered in this
study. A band and cellular-mesh and fragmented dislocation structures were formed in the
case of the CG state, while large anisotropic fragments were formed in the UFG state. Thus,
it indicates a local softening of the material before its fracture.

For a deeper understanding of the deformation mechanisms of pure titanium and
Ti-45Nb alloy, it is necessary to investigate the evolution of the microstructure at various
stages of plastic deformation. This is the subject of future research.
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44. Pieczyska, E.A.; Maj, M.; Golasiński, K.; Staszczak, M.; Furuta, T.; Kuramoto, S. Thermomechanical studies of yielding and strain

localization phenomena of gum metal under tension. Materials 2018, 11, 567–579. [CrossRef]
45. Plekhov, O.; Naimark, O.; Chudinov, V.; Leont’ev, V. Experimental investigations of the laws of energy dissipation during dynamic

deformation of nanocrystalline titanium. Techn. Phys. Lett. 2009, 35, 92–95. [CrossRef]
46. Oborin, V.A.; Bannikov, M.V.; Naimark, O.B.; Palin-Luc, T. Scaling invariance of fatigue crack growth in gigacycle loading regime.

Tech. Phys. Lett. 2010, 36, 1061–1063. [CrossRef]
47. Naimark, O.B.; Sharkeev, Y.P.; Mairambekova, A.M.; Bannikov, M.V.; Eroshenko, A.Y.; Vedernikova, A.I. Failure mechanisms of

titanium VT1−0 and zirconium alloy E110 in ultrafine-grained, fine-grained and coarse-grained states under cyclic loading in
gigacycle regime. Lett. Mater. 2018, 8, 317–322. (In Russian) [CrossRef]

48. Plekhov, O.A.; Panteleev, I.A.; Naimark, O.B. Energy accumulation and dissipation in metals as a result of structural-scaling
transitions in a mesodefect ensemble. Phys. Mesomech. 2007, 10, 294–301. [CrossRef]

49. Moyseychik, E.A.; Vavilov, V.P. Analyzing patterns of heat generated by the tensile loading of steel rods containing discontinuity-
like defects. Intern. J. Damage Mech. 2018, 27, 950–960. [CrossRef]

50. Zhang, H.X.; Wu, G.H.; Yan, Z.F.; Guo, S.F.; Chen, P.D.; Wang, W.X. An experimental analysis of fatigue behavior of AZ31B
magnesium alloy welded joint based on infrared thermography. Mater. Des. 2014, 55, 785–791. [CrossRef]

51. Wang, X.G.; Crupi, V.; Guo, X.L.; Zhao, Y.G. Quantitative thermographic methodology forfatigue assessment and stress measure-
ment. Int. J. Fatigue 2010, 32, 1970–1976. [CrossRef]

52. Williams, P.; Liakat, M.; Khonsari, M.M.; Kabir, O.M. A thermographic method forremaining fatigue life prediction of welded
joints. Mater. Des. 2013, 51, 916–923. [CrossRef]

53. Fan, J.; Guo, X.; Wu, C. A new application of the infrared thermography for fatigue evaluation and damage assessment. Int. J.
Fatigue 2012, 44, 1–7. [CrossRef]

54. Yan, Z.F.; Xia, Z.H.; Wang, W.X.; Wang, K.; Pei, F.F. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy
based on infrared thermography. PEI Trans. Nonferr. Met. Soc. 2013, 23, 1942–1948. [CrossRef]

55. Nowak, M.; Maj, M. Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared
thermography. Numerical procedures and results. Arch. Civ. Mech. Eng. 2018, 18, 630–644. [CrossRef]

56. Sharkeev, Y.; Vavilov, V.; Skripnyak, V.; Belyavskaya, O.; Legostaeva, E.; Kozulin, A.; Sorokoletov, A.; Skripnyak, V.V.; Eroshenko,
A.; Kuimova, M. Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural
states by the use of infrared thermography. Metals 2018, 8, 703–717. [CrossRef]

57. Sharkeev, Y.; Vavilov, V.; Skrypnyak, V.; Legostaeva, E.; Eroshenko, A.Y.; Belyavskaya, O.; Ustinov, A.; Klopotov, A.; Chulkov, A.;
Kozulin, A.; et al. Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr1–Nb alloys by
digital image correlation and infrared thermography. Mater. Sci. Eng. A 2020, 784, 139203. [CrossRef]

58. ASTM E1382-97; Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
ANSI: New York, NY, USA, 2010. [CrossRef]

59. Colings, E.W. (Ed.) Physical Metallurgy of Titanium Alloys; American Society for Metals: Metals Park, OH, USA, 1984; 261p.

http://doi.org/10.1007/s10853-014-8397-7
http://doi.org/10.1016/j.matdes.2016.10.035
http://doi.org/10.1016/j.jallcom.2014.12.159
http://doi.org/10.1016/j.msea.2011.06.051
http://doi.org/10.1134/S1063783414120117
http://doi.org/10.1007/s11340-013-9819-1
http://doi.org/10.2478/v10172-012-0124-2
http://doi.org/10.1080/17686733.2014.897016
http://doi.org/10.1016/j.msea.2006.02.462
http://doi.org/10.1016/j.infrared.2013.03.006
http://doi.org/10.1088/0957-0233/15/9/R01
http://doi.org/10.1134/S0021894413010148
http://doi.org/10.3390/ma11040567
http://doi.org/10.1134/S1063785009010283
http://doi.org/10.1134/S106378501011026X
http://doi.org/10.22226/2410-3535-2018-3-317-322
http://doi.org/10.1016/j.physme.2007.11.008
http://doi.org/10.1177/1056789517715087
http://doi.org/10.1016/j.matdes.2013.10.036
http://doi.org/10.1016/j.ijfatigue.2010.07.004
http://doi.org/10.1016/j.matdes.2013.04.094
http://doi.org/10.1016/j.ijfatigue.2012.06.003
http://doi.org/10.1016/S1003-6326(13)62681-3
http://doi.org/10.1016/j.acme.2017.10.005
http://doi.org/10.3390/met8090703
http://doi.org/10.1016/j.msea.2020.139203
http://doi.org/10.1520/E1382-97R10


Materials 2022, 15, 8480 17 of 17

60. Lai, M.J.; Li, T.; Raabea, D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-
induced plasticity in a metastable β titanium alloy. Acta Mater. 2018, 151, 67–77. [CrossRef]

61. Prima, F.; Vermaut, P.; Ansel, D.; Debuigne, J. Omega—Precipitation in a beta metastable titanium alloy, resistometric study.
Mater. Trans. JIM 2000, 41, 1092–1097. [CrossRef]

62. Takemoto, Y.; Hida, M.; Sakakibara, A. Mechanism of omega-alpha transformation in beta-Ti alloy. Trans. Jpn. Inst. Met. 1993, 57,
261–267. [CrossRef]

63. Prima, F.; Vermaut, P.; Texier, G.; Ansel, D.; Gloriant, T. Evidence of α-nanophase heterogeneous nucleation from ω particles in a
β-metastable Ti based alloy by high-resolution electron microscopy. Scr. Mater. 2006, 54, 645–648. [CrossRef]

64. Koneva, N.A.; Kozlov, E.V.; Trishkina, L.I.; Pekarskaya, E.E. Thermodynamics of substructure transformations under plastic
deformation of metals and alloys. Mater. Sci. Eng. A 1997, 234–236, 614–616. [CrossRef]

65. Murayama, M.; Howe, J.M.; Hidaka, H.; Takaki, S. Atomic-Level Observation of Disclination Dipoles in Mechanically Milled,
Nanocrystalline Fe. Science 2002, 29, 2433–2435. [CrossRef] [PubMed]

http://doi.org/10.1016/j.actamat.2018.03.053
http://doi.org/10.2320/matertrans1989.41.1092
http://doi.org/10.2320/jinstmet1952.57.3_261
http://doi.org/10.1016/j.scriptamat.2005.10.024
http://doi.org/10.1016/S0921-5093(97)00271-2
http://doi.org/10.1126/science.1067430
http://www.ncbi.nlm.nih.gov/pubmed/11923534

	Introduction 
	Materials and Research Methods 
	Results and Discussion 
	Conclusions 
	References

