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Annoramusi. Abstract. In this paper we consider the nonparametric estimation problem
for a continuous time regression model with non-Gaussian Lévy noise of small intensity.
The estimation problem is studied under the condition that the observations are accessi-
ble only at discrete time moments. In this paper, based on the nonparametric estimation
method, a new estimation procedure is constructed, for which it is shown that the rate of
convergence, up to a certain logarithmic coefficient, is equal to the parametric one, i.e.,
super-efficient property is provided. Moreover, in this case, the Pinsker constant for the
Sobolev ellipse with the geometrically increasing coefficients is calculated, which turns
out to be the same as for the case of complete observations.
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AnHoTauus. PaccmarpuBaercs 3aja4a HEMapaMeTpUUECKOTO OLICHUBAHHUS B MOJICIH He-
NIPEPBIBHOM perpeccun ¢ HeTayCCOBCKMM ITyMoM JIeBH Maiioi MHTEHCHBHOCTH. 3ajada
OLICHUBAHUS U3Y9aeTCsl IPU YCIOBHH, YTO HAOIIOICHUS JOCTYITHEI TOJIBKO B IMCKPETHBIE
MOMEHTHI BpeMeHH. Ha ocHOBe MeTo/ia HertapaMeTpHIecKOro OLCHUBAHUS CTPOUTCS HOBast
HpoLeypa OLIEHHBAHUSA, I KOTOPOH MOKa3aHO, YTO CKOPOCTh CXOAMMOCTH JI0 OIpese-
JICHHOTO JorapugmMuueckoro koddduimenta paBHa napaMeTpudecKoil, T.e. yCTaHaBIMBa-
eTcs CBOHCTBO cynepaddekTHBHOCTH. bonee Toro, B 3TOM Cllydae BBIYHCIISCTCS KOHCTaHTa
IMTuHCKepa A1 cOOO0JICBCKOTO Kiacca ¢ FeOMETPHYECKU BO3PACTAIOMNMU K03 uneH-
TaMH, KOTOpasi OKa3bIBACTCSI TAKOIT JKe, KaK M JUISl CIIy4dast IOJIHBIX HAOII0ICHHI.
KiioueBble c10Ba: HelapaMeTpUuecKoe OLICHUBAHHE, MOJEIH HErayCCOBCKOH PerpeccHu
B HENPEPHIBHOM BpeMEHH, poOacTHOE OLleHNBaHNUE, 3(Q(PEKTHBHOE OIICHUBAaHNE, KOHCTAaHTA
IMunCKepa, cynepadheKTHBHOE OIICHHBAaHNE

Baaronapuoctu: MccnenoBanue BBINOIHEHO NpU (GUHAHCOBOM moiep>xke PHD B pam-
Kax Hay4HOro mpoekTa Ne 22-21-00302.

Jost umrupoBanusi: Hukugopos H.U., ITepramenmukoB C.M., [Tuenunnes E.A. Cyne-
paddexTuBHOE poOACTHOE OLICHMBAHKE B HEMIPEPBIBHBIX PErPECCHOHHBIX MOJelsX JleBu
[0 JUCKPETHBIM JaHHbIM // BecTHHK TOMCKOTO TOCYAapCTBEHHOrO YHHBepcuTeTa. Ma-
TemaTtrKa 1 Mexanuka. 2023. Ne 85. C. 22-31. doi: 10.17223/19988621/85/2

1. Introduction
In this paper, we consider a non-Gaussian Lévy regression model in continuous
time, introduced in [1], i.e.,
dy, =S(t)dt+edg,, 0<t <1, 1.1
where S()) is a nonrandom unknown [0,1] - R function from £,[0,1], (&,),..., is an
unobserved noise defined through a Lévy process and € > 0 is the noise intensity. We
study the estimation problem for this model in nonparametric setting, i.e., we assume that

S(t)=iej¢j(t), 0<t<1, (1.2)

where the Fourier coefficients (0,),., belong to some set © defined later and (¢,)

j=1 ]>1

an orthonormal basis in £,[0,1], i.e., forany i, j >1

(69,) j 6,0, Odt =1, (1.3)

The problem is to develop eff|C|ent estimation methods for the regression function
S, as € > 0, based on the discrete observations

|
(yr, Josizn @Nd 1, :H’ (1.4)

where the number of observations n is a function of the parameter ¢, i.e., n=n_, such
that n, =O(s?) as ¢ —> 0. The condition € — 0 means that the signal/noise ratio goes

to infinity. Note that, if (&, ),.,., is a Brownian motion, then we obtain a “signal+white

0<t<1
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noise” model which is very popular in statistical radio-physics (see, for example, [2-4]
and the references therein).

We assume that the stochastic component in the model (1.1) is given by a Lévy pro-
cess with jumps. The reasons for the appearance of pulse noises in stochastic dynamic
systems can be, for example, a sudden change in environmental conditions like the
emergence of epidemics in sociological systems, crisis phenomena in economic systems,
all kinds of failures and disruptions in the functioning of technical systems, etc. Note
that the pulse noises for the continuous time regression models have been introduced in
[5-7] on the basis of the compound Poisson processes for parametric regression models,
and in [8, 9] such noises are used for nonparametric signal estimation problems. Later,
to include all possible impulse noises, in the observation model (1.1) in [1] it is pro-

posed to use general non-Gaussian Lévy processes (Fﬁ )OStSl whose distribution Q is un-

known and belongs to the distribution family Q. defined in the next section. For these
reasons, inthispaper, to study the quality of estimation, we use the robust risk

R'(S,S)=supR,(S,S), (1.5)
QeQ;

where S is an estimator (i.e., any measurable function of (Y Jocien )s
R R 2 1
Ry(S,8):=Eq S| and [s| = [s*(t)et (16)
0

Here E, stands the expectation with respect to distribution Q. We consider the
minimax estimation problem, i.e., our main goal is to minimize the maximal value risk
(1.5) over all possible estimation procedures S , i.e.,

SUpR’(S,S) - min as & —0.
Se®

To this end we use the exact lower bounds obtained in [10] for the nonparametric

estimation problems on the basis of the complete data (y,),., - It should be noted

that in [10] the first time it was constructed super-efficient nonparametric estimation
procedures, i.e., estimators for which the minimax convergence rate coincides with the
parametric one up to a logarithmically increasing coefficient. In this paper, we show
that the same lower bounds provide the super efficiency properties on the discrete ob-
servations (1.4) in the robust estimation setting.

The rest of the paper is organized as follows. In Section 2 we give the main condi-
tions which will be assumed for the model (1.1). In Section 3 we construct the estima-
tor. In Section 4 we state our main results on the adaptive efficiency. Section 5 contains
the main proofs. Section 6 contains all necessary auxiliary results.

2. Main conditions

Let the unknown function S in (1.1) belong to the ellipse in £,[0,1] defined as

M

]

]
AN

G:{Seﬁz[o,l]: a,0? sr}, 2.1

where a, =e®" with fixed constants 0 <o <1 and «>0. For this set we need the
following condition.

2



Nikiforov N.I., Pergamenshchikov S.M., Pchelintsev E.A. Super-efficient robust estimation

A1) VS € ® there exists continuous derivate S such that sup"S" <00,
Se®

To estimate unknown function S in (1.1) we use its Fourier expansion on the time
grid {t,,...,t,} defined in (1.4) for which we use empiric inner product and the norm in

R" defined as
1 n
(x¥), == 22%; and X[ = (x,%),.
j=1

As to the basis in (1.2) we assume that the first n functions (¢,),.,., are orthonor-
mal with respect to this product, i.e.,
1 n
(O (I)j)n = sz)l (t )d), t)= 1{i:j} : (2.2)
1=1
For example, one can take spline basis defined in [11] or the trigonometric basis
(Tr;) ;s with Tr,=1and for j>2
Tr.(x):\/E 095(2n[j'/2]x) foreven-j,
! sin(2n[ j / 2]x) forodd j,

where [x] denotes the integer part of x. Note, that if n is odd, then the trigonometric
basis possesses the orthonormality property (2.2). In this case we set n=2[g?]+1.

(2.3)

Now, for any te{t,,...,t,} , we represent function S as

S()=.0,,0,(t) and 6, =(S.9,),. (24)
j=1
A2) For any & >0, the coefficients (9, ),.,., satisfy the following inequalities
0, 64|
g, =Ssupmaxnsup——— <o (2.5)
nxl 12isn 5o J
and
g, = sup supnz( Ofn—(1+8)29f]<oo. (2.6)
1<N<n Se® [ =N
Now we set
n b
@, =®,(8) = [ ¢,t)(SU)-S(t ) du. 2.7)
=1y,
As) The vector (w, )Kjgn is uniformly bounded in R", i.e.
0, =supn’sup Y @’ <oo. (2.8)

n=1 Seo j—1

Remark 2.1. Note that one can check directly that for the trigonometric basis (2.3)
for all functions S from ® and for any k >1 there exists the continuous derivative of

order k such that sup||S(")||2 <o . Therefore, Lemmas A.4-A.6 from [9] imply that the
Se®

conditions Az) — As) hold for the trigonometric basis.
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Furthermore, as to the noise process (?;I) similar to [1] we set

0<t<1
& =pW, +p,Z and z, = x*(n—f),, (2.9)
where p, and p, are some unknown constants, (W,),.,., is a standard Brownian mo-
tion, “*” denotes the stochastic integral with respect to the compensated jump measure
(see, for example, in [12], Chapter 3), u(dsdx) is a jump measure with deterministic
compensator {i(dsdx)—dsI1(dx), and TI() is the unknown Lévy measure such that
I1(x*) =1 and TI(x*) <, (2.10)
where TI(| z|") = _[ | Z|" T1(dz) . Note that the measure TI(R\{0}) could be equal
R\{0}
to +oo . In the sequel we will denote by Q the distribution of the process (&,),.,., and
by Q. the family of such distributions in the Skorokhod space D[0,1] for which
0<g, <p; and p’ +p3 <¢ (2.11)
where the unknown bounds 0<c, <c¢ can be functions of ¢, i.e., ¢c.=c.(¢) and
¢ =¢ (g), such that for any §>0

Iir_nipf|lna|5 c.(e)>0 and liminf Ine[" ¢"(e) <o (2.12)

In this case the expectation E, (& —&,)* =(p; —p;)(t—s) for any 0<s<t<1 and,

therefore, in view of the property (2.11)

gug Eo(& —&) <c (t-9). (2.13)

The bounds ¢. <¢" may be any positive fixed constants.

3. Estimation procedure

In this paper, as in [13], to estimate the function S, we use discrete Fourier expan-

sion (2.4) in which we estimate the coefficients (9kvn)1<k<n through the least squares

estimation method, i.e.,

0, =D 0 (t))AY, - 3.1)
j=1
Using here the model (1.1), we obtain
0, = O 0+, +EN,, (3.2)

where 1, = Zq)k (tj)Aij . The orthonormality property (2.2) implies

j=1
EQT]E = Z¢k (tj)EQAEnZJ )
j=1
and, therefore, in view of the bounds (2.13)

sup sup Egns <¢. (3.3)

1<k<n QeQ,
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Now, using the weighted least squares estimate from [10], we estimate the function S by
S/ =2 10 (©), v = Q=e" "L, (3.4)
k=1

and
n, = max {13 I<n:e*g(l) < s’zr} , (3.5)

=1 L o
where g(l)=> e >(1_efw(l -] ))_
[

4, Main results

First, we study the upper bound for the robust risk (1.5) corresponding to the esti-
mation procedure (3.4).
Theorem 4.1. Assume that the conditions A1)-As) hold. Then

limsupv, supR(S;,S) < k™, (4.1)

g0 Se®
where the rate v, =&?|Ing| " and &= N
Now, to compare with other estimators we need to introduce the class of possible
estimators, i.e., let = be the set of all estimators S measurable with respect to the o-

field generated by the observation (1.1), i.e., cs{ytl ,0<1< n} .

Theorem 4.2. The robust risk (1.5) admits the following lower bound
liminf v, inf sup R'(S,S) >k, (4.2)

SeE 5¢0
These theorems imply the following efficient property.
Theorem 4.3. The estimate (3.4) is asymptotically efficient, i.e.,
inf supR’ (S, S)
lim3=esse__ —q (4.3)
«=>0 supR_(S,,S)

Se®
and, moreover,
limv, supR’(S’,S) = k. (4.4)
£—0 Se®

Remark 4.1. For the model (1.1) the optimal convergence rate for parametric
problems is & , here we obtained ¢ |In s|““ , i.e., almost parametric convergence rate up

to the logarithmically increasing coefficient |In g|l/°‘ . The same effect was found in [10]

for the case of continuous observations. For this reason, the estimation procedure (3.4)
is called super-efficient.

5. Proofs

5.1. Proof of Theorem 4.1. First note, that from (2.4), (3.2), and (3.3) one can de-
duce directly that
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S:—S"i =szzn:nyQn? +U,,
=1

where U, = Z(yjej,n -0, +ijj,n)2 . Moreover, in view of the bound (3.3), we obtain
j=1

s -S| =&Yyt +U, . (5.1)
j=1
As to the last term, here note that for any 0<d <1

U, <@+3)T, +@+5 ) w5, , (5.2)
=1
where T, =" (1—y,)?63, for which from (3.4) it follows that
j=1

=i(1—yj)ze + Z 0, =T, +T,,.

j=1 j=n+1
Note here that for any 5 >0
05, <(1+8)07 +(1+57)(6,,-6,)°.
In view of the condition (2.5), we obtain for any 0 < 6 <1

T, _(1+5)Z(1 )70, +q,1+3)n?> jP <
j=1

<@+ 5)2(1—%)291n +0,(L+3nin.
j=1

Through the condition (2. 6) we have
T, <@+38) D 0 +(@1+57")q,n?
=+l
and, we obtain
T <@+8)T +@+8")(gnd+q,)n?,
where the first term T, =" (1-y,)?6% . To study the last term in (5.2), note that the
i>1
condition (2.8) implies
supZm T <
S€® j=1
From Lemma 6.2

limsupv, supU, <limsupv, supT, .
e—->0 SO e—-0 Se®

To estimate the term T, we apply the definition in (3.4). Then, it can be estimated as

:—Za 262<—Za92<—

a, = jzn+l a, jn a,

From the definition of n, in (3.5) it follows that

n+l 2

. a
a ,>re’/g(n+1) and T, < .

g“g(n. +1).

ne+1
e

28



Nikiforov N.I., Pergamenshchikov S.M., Pchelintsev E.A. Super-efficient robust estimation

Taking into account here that Iinga /a, =1and using the last property in (6.2), we

N +1

obtain that forany O<v<a
. Tn*
limsup ——— <.
e>0 &N

Therefore, the first property in (2.12) and Lemma 6.2 imply
limv, T, =0.

£—0

Using the property (6.3) and Lemma 6.2 in the upper bound (5.1), we obtain that

. * 2 _
limsup v, supsup Eg, |S; —S||n <M.

£—>0 Se® QeQ,

Now Condition A1) and Lemma 6.3 imply the upper bound (4.1). O
5.2. Proof of Theorem 4.2. First of all, note that

R(S,S)2Eq [5: -S|,

where Q, is the distribution of the noise (&t )Oglsl in (1.1) with p, :\/;* and p, =0,
i.e., under the distribution Q, we obtain the “signal+white noise” model, i.e.,

dy, = S(t)dt +&dw, with the small parameter & = 8\/? . S0, Theorem 1 and Theorem 5
from [10] imply immediately the lower bound (4.2). O

6. Auxiliary results

Lemma 6.1. The function g(n) defined in (3.5) satisfies the following properties

liminf n""*g(n) >0, (6.1)
forany O<v<a
limsupn™g(n) <oo. (6.2)
Moreover, for the weight (3.4)
IimEny =1. (6.3)
n—ow n j:l

Proof. Setting A; =n” —(n— j)* we can represent g as

n-1 m
_ —KXJ _ —KXJ —KXJ _ —K)VJ
g(n)—;e (l e )zée (l e )

where m=[n*]. For n>2"* and 1< j<m through the Taylor expansion one can
obtain that

nl—a nZ—a n
Moreover, taking into account that m < n*™* < 2m, we obtain that

mo el _Kko
g(n)=e™>e m[l—e ZmJ
=L

and, therefore,
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n—oo m

1 KO
liming 30 > e"‘.[e’mu [1—e2 ]du >0.
0
This implies the lower bound (6.1). Moreover, note also that forany 0 <p <1
[Pn} o o o
g(n) < @-p)n+1+ ) ™" < (1-p)n+1+ne "0
j=1
Choosing p=1-n" with O<v<a and noting through Taylor expansion that
1-p*>an™, a n— o, we obtain the upper bound (6.2). Moreover, from this
through the definition of weights v, immediately follows the property (6.3). O
Lemma 6.2. The function n. defined in (3.4) satisfies the following limit property

. n. _
|Im—1/a =K Yo
s»w“ng

Proof. First note that n. — o as ¢ — 0. Moreover, from (3.5) and (6.1) it follows
that for a sufficiently small ¢
2xn? <Ine”’r and 2x(n, +1)“ +Ing(n. +1) > Ing’r.

1/a

From here we can deduce immediately that n, /|In g|”“ —> Kk as € > 0. Using here

the bounds (2.12), we obtain this lemma. O
Lemma 6.3. Let f :[0,1] — R be an absolutely continuous function with square

integrable derivative f | i.e., ||f|| <o and g:[0,1] > R be a piecewise constant func-
tion of the form g(t) ZZC,-X([H,O,)(U , where c; are some constants. Then, for any
j=1

8 >0 the function A= f —g satisfies the following inequality

- 12
IAlZ < @+8) A" + @+ 51)@ .
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