

Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский государственный горный университет»

ХХ УРАЛЬСКАЯ ГОРНОПРОМЫШЛЕННАЯ ДЕКАДА

СБОРНИК ТЕЗИСОВ

LXIV Международной конференции «Актуальные проблемы прочности» 4-8 апреля, 2022 года Екатеринбург, Россия

Екатеринбург 2022

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОКСИДНОГО ПОВЕРХНОСТНОГО СЛОЯ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА В МОНОКРИСТАЛЛАХ СПЛАВА NI_{50.6}TI_{49.4}

И.Д. Фаткуллин, А.С. Ефтифеева, Е.Ю. Панченко, Ю.И. Чумляков

Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050

E-mail fatkullin_92@mail.ru

Известно, что сплавы TiNi активно реагируют с кислородом с образованием оксидного слоя на поверхности при повышенной температуре [1]. Оксидный слой играет важную роль в борьбе с коррозией, способствует улучшению биосовместимости и может оказывать влияние на функциональные свойства сплавов с памятью формы. Состаренные сплавы TiNi с высоким содержанием никеля $50,6\,\%$ характеризуются высокими прочностными свойствами и обратимой деформацией при B2-R-B19' мартенситном превращении (МП) $8-10\,\%$, однако влияние поверхностных оксидных фаз на развитие МП не изучено. Поэтому, целью текущей работы является изучение влияния поверхностных оксидных фаз на функциональные свойства и температуры МП в монокристаллах сплава $Ni_{50,6}Ti_{49,4}$.

Монокристаллы $Ni_{50,6}Ti_{49,4}$ выращены методом Бриджмена. Образцы для исследования при деформации растяжением имели форму двусторонних лопаток с размерами рабочей части $12,5 \times 2,5 \times 1,5$ мм³. Ось деформации соответствует направлению вблизи $[001]_{B2}$. Образцы монокристаллов отжигали при 1253 К в течении 1 часа в атмосфере гелия и закаливали в воду комнатной температуры. Затем на этих образцах проводили старение при 823 К, 1 ч. Одну часть образцов старили в атмосфере гелия, а другую – на воздухе, для образование оксидного слоя на поверхности.

В состаренных на воздухе монокристаллах методом энергодисперсионной рентгеновской спектроскопии был исследован оксидный слой, образовавшийся в результате термообработки. Экспериментально показано, что в состав оксидной поверхностной пленки входят O-37,2 ат. %, Ti-46,7 ат. %, Ni-23,9 ат. %. Толщина пленки неоднородна и составляет менее 4 мкм. Как показано в предыдущих исследованиях при температурах окисления 773-873 К поверхностный оксидный слой имеет минимальную концентрацию никеля и содержит, в основном, оксиды титана TiO, TiO_2 , а также возможно появление соединения Ni_3Ti [2].

Температуры МП, полученные методом дифференциальной сканирующей калориметрии, представлены в табл. 1. Показано, что старение при 823 К приводит к развитию двухстадийного B2-R-B19' МП. Температура T_R связана с B2 \rightarrow R МП, температура M_s характеризует начало $R\rightarrow$ B19' МП, температура M_f – конец этого превращения, температура A_s начало B19' \rightarrow R \rightarrow B2 МП, а температура A_f конец этого превращения (табл. 1).

Таблица 1. Характеристические температуры B2-R-B19' $M\Pi$ для монокристаллов $Ni_{50.6}Ti_{49.4}$, состаренных на воздухе и в гелии.

Старение 823 К, 1 ч	M _s , K	M _f , K	A _s , K	A _f , K	T _R , K	Δ_1 , K	Δ_2 , K
На воздухе	250	223	276	284	270	27	8
В гелии	244	227	277	289	273	17	12

Наличие оксидного поверхностного слоя снижает температуры $M_{\rm f}$ и $A_{\rm f}$ на 4–5 K, а температура $M_{\rm s}$, наоборот, повышается на 6 K относительно температур у образцов, состаренных в гелии. Известно, что оксидные слои создают дополнительно сжимающие напряжения в образце, что приводит к повышению температуры $M_{\rm s}$ в соответствии с

уравнением Клапейрона-Клаузиуса [3]. Такое изменение температур МП приводит к значительному расширению температурного интервала прямого превращения Δ_1 = M_s - M_f =27 K в образцах с оксидным поверхностным слоем, по сравнению с образцами без поверхностных слоев (Δ_1 =17 K). Это связано с неоднородностью химического состава и внутренних напряжений вблизи оксидного поверхностного слоя.

Было рассмотрено влияние поверхностной оксидной фазы на эффект памяти формы (ЭПФ) в циклах охлаждение/нагрев под нагрузкой. На рис. 1 представлены кривые деформации от температуры $\epsilon(T)$ в циклах охлаждение/нагрев под растягивающей нагрузкой для монокристаллов $Ni_{50.6}Ti_{49.4}$, состаренных на воздухе и в атмосфере гелия. Как видно, кривые $\epsilon(T)$ при развитии ЭПФ практически идентичные и слабо зависят от термообработки.

Обратимая деформация при развитии ЭПФ $\epsilon_{ЭПФ}$ слабо зависит от термообработки. Максимальные значения $\epsilon_{ЭПΦ}$ для образцов, состаренных в гелии и в воздухе одинаковые и равны $\epsilon_{ЭПΦ}$ =4,0-4,1 % (рис. 1). Теоретическое значение деформации превращения с учетом полного раздвойникования мартенсита для [001] $_{B2}$ ориентации при растяжении составляет $\epsilon^{\text{теор}}$ =2,9 %. Увеличение экспериментальной величины ЭПФ по сравнению с теоретической $\epsilon^{\text{теор}}$ связано с дополнительным деформационным двойникованием В19' мартенсита под нагрузкой [4]. Таким образом, оксидная поверхностная фаза не влияет на ЭПФ в монокристаллах сплава Ni_{50,6}Ti_{49,4}. Аналогичные результаты были получены на поликристаллах сплава богатого Ti при изучении влияния поверхностного оксидного слоя после отжига до 773 K на ЭПФ [5].

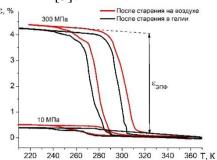


Рисунок 1. Кривые $\varepsilon(T)$ при охлаждении/нагреве под растягивающими напряжениями для состаренных при 823 K, 1 ч $[001]_{B2}$ -монокристаллов $Ni_{50.6}Ti_{49.4}$ на воздухе и в гелии.

Таким образом, оксидный поверхностный слой в монокристаллах $Ni_{50.6}Ti_{49.4}$, сформированный при старении на воздухе при 823 K в течение 1 часа, оказывает слабое влияние на ЭПФ $\epsilon_{\rm ЭПФ}$ =4,0-4,1 % в циклах охлаждение/нагрев под действием постоянной растягивающей нагрузки, но приводит к расширению температурного интервала прямого МП до Δ_1 =27 K в циклах охлаждение/нагрев в свободном состоянии по сравнению с кристаллами без оксидного слоя (Δ_1 =17 K).

Исследование проведено при поддержке гранта в соответствии с Постановлением Правительства Российской Федерации № 220 от 09 апреля 2010 года (Соглашение № 075-15-2021-612 от 04 июня 2021 года).

- 1 C.L. Chu, S.K. Wu, Y.C. Yen, *Mater. Sci. Eng.*, **216**, pp. 193-200 (1996).
- 2 G.S. Firstov, R.G. Vitchev, H. Kumar, B. Dlanpain, J.V. Humbeeck, *Biomaterials*, 23, pp. 4863–4871 (2002).
 - 3 K. Otsuka, C.M. Wayman, *Shape Memory Materials* (Cambridge, 1999).
- 4 Ю. И. Чумляков, И. В. Киреева, Е. Ю. Панченко, Е. Е. Тимофеева, *Механизмы термоупругих* мартенситных превращений в высокопрочных монокристаллах на основе железа и никелида титана (Томск, 2016).
- 5 T.H. Nam, D.W. Chung, H.W. Lee, J.H. Kim, M.S. Choi, *Journal of Materials Science*, **38**, pp. 1333 1338 (2003).