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We compute the vacuum fermion current in the (2þ 1) dimensional Jackiw-Rossi model by using the
1=m expansion. The current is expressed through a weighted η-function with a matrix weight. In the
presence of such a weight, the usual proof of topological nature of ηð0Þ is no longer applicable. Direct
computations confirm the following surprising result; the fermion number induced by vortices in the
Jackiw-Rossi model is not topological.
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I. INTRODUCTION

As we know from the pioneering paper by Jackiw and
Rebbi [1] and from the subsequent development reported in
[2], the fermion number of solitons can take fractional and
even irrational values. In the known cases, the fermion
number is topological. This means that it depends on the
boundary or asymptotic values of the background fields and
is not sensitive to smooth variations of these fields in the
interior of the manifold. From the very beginning, the
fermion number fractionization had applications to con-
densed matter physics [3]. More recently, this mechanism
was applied to the physics of topological insulators (see [4]).
Among the planar (2þ 1 dimensional) solitonic systems,

a prominent role is played by the Abrikosov-Nielsen-
Olesen (ANO) vortex. There are many possible ways to
couple fermions to this system, and thus there are many
quantum systems which include the ANO vortex as a
bosonic sector. In a supersymmetric model, the one-loop
shift of the mass of the vortex was calculated in [5,6]. In a
pure bosonic model, this was done in [7–9] while (non-
supersymmetric) fermions were added in [10,11].

The fermion number fractionization in 2þ 1 dimensions
on a pure gauge field background was calculated in [12].
For a singular magnetic vortex this effect was considered in
[13]. For a pair of fermions coupled to both gauge and
Higgs fields of the ANO vertex, the half-integer fermion
fractionization was obtained in [14,15] (see also the
preceding papers [16,17]). In these models, the fermions
have the elementary electric charge ewhile the scalar fields
possess charge 2e. Thus, the ANO vortex gets a fractional
flux. There is a way of coupling a single generation of
fermions to the ANO system which is given by the Jackiw-
Rossi model [18]. This coupling reminds us of planar
superconducting systems. A candidate for the fractional
flux vortex in such systems was recently found experi-
mentally [19]. This discovery motivated a study [20] of
fermion charge fractionization in the Jackiw-Rossi model.
The computations in this paper were based on the usual
relation between the vacuum fermion number and the η-
function of the Hamiltonian, which is not correct in the
Jackiw-Rossi model, as will be demonstrated below.
The purpose of this paper is to analyze the vacuum

fermion number in the Jackiw-Rossi model paying special
attention to its topological (or rather nontopological)
nature. First, we observe that the interaction between scalar
and spinor fields does not allow us to immediately relate the
fermion number to the η-function of an operator. One has to
double the spinor components. This is similar to what has
been done in [18,21] to analyze the zero-energy spectrum,
but we do this using the path integral formalism following
the method of [22]. The fermion density is then related to
an η-function which, however, is weighted with a matrix.
The presence of this matrix destroys the standard proof of

*dvassil@gmail.com
†caio.almeida.ads@gmail.com
‡rodrigo.fresneda@ufabc.edu.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 125015 (2021)

2470-0010=2021=103(12)=125015(7) 125015-1 Published by the American Physical Society

https://orcid.org/0000-0002-2113-7298
https://orcid.org/0000-0002-3882-3702
https://orcid.org/0000-0002-1512-0799
https://orcid.org/0000-0001-7928-9086
https://orcid.org/0000-0002-2894-4121
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.125015&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1103/PhysRevD.103.125015
https://doi.org/10.1103/PhysRevD.103.125015
https://doi.org/10.1103/PhysRevD.103.125015
https://doi.org/10.1103/PhysRevD.103.125015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


vanishing local variations of η and of the topological nature
of this quantity. We continue by computing a few leading
terms in the large mass expansion of the fermion number
with the heat kernel methods and confirm the presence of
nontopological contributions, which depend on the profiles
of magnetic and Higgs fields rather than on their global
characteristics.
This paper is organized as follows: In the next section,

we derive an expression for the vacuum fermion number in
the Jackiw-Rossi model in terms of an η function with a
matrix weight. Section III is dedicated to the heat kernel
evaluation of fermion number. First, we show why the
standard proof of topological nature does not work for a
weighted η function. Then, we pinpoint the nontopological
fermion number within the large mass expansion. Some
concluding remarks are given in the last section. Finally, in
Appendix we give an alternative derivation of the effective
action which does not rely on doubling the fermions.

II. FERMION NUMBER IN THE
JACKIW-ROSSI MODEL

The Jackiw-Rossi model [18] in (2þ 1) dimensions is
described by the Lagrangian

L ¼ ψ̄ðγμði∂μ − eAμÞÞψ −
1

2
igϕψ̄ψC

þ 1

2
ig�ϕ�ψ̄Cψ −mψ̄ψ ð1Þ

governing the dynamics of a two complex component
spinor field ψ coupled to a gauge and complex scalar field
Aμ, ϕ.
As compared to the original work [18] a mass term has

been added. For convenience, let us take the γ-matrices in
the Majorana representation,

γ0 ¼ σ2; γ1 ¼ iσ1; γ2 ¼ iσ3: ð2Þ

Then the charge conjugation matrix can be taken as
C ¼ −γ0. We have the usual relations CγμC−1 ¼ −γμT ,
ψC ¼ ψ�, etc.
We assume that bosonic fields Aμ and ϕ belong to the

topological class of an ANO vortex. This configuration is
static, so that A0 ¼ 0 and all fields do not depend on time.
We are not going to use the exact profile functions, though
it will be important to us that this configuration is localized
somewhere near the origin. If r is the radial coordinate, for
r → ∞ we have

jϕj → v; Djϕ → 0; Fjk → 0: ð3Þ

Here and in what follows, xj, xk, etc., denote spatial
coordinates. Djϕ ¼ ð∂j þ 2ieAjÞϕ is a gauge covariant
derivative, depending on the charge of the field it acts upon;
therefore, in our notation, Djϕ

� ≡ ðDjϕÞ�. Note that the

electric charge of ϕ is 2e, Fjk ≡ ∂jAk − ∂kAj, and v is a
minimum of the Higgs potential. All functions in (3) go to
their asymptotic values exponentially fast. Let N ∈ Z be
the topological charge of the vortex. The magnetic flux
quantization condition

e
π

Z
d2xF12 ¼ N ð4Þ

has an unusual factor on the right hand side due to the
charge 2e of ϕ. This is why we say that the vortex has a
fractional flux.
The Lagrangian (1) besides the ψ̄ψ contains also the ψ̄ψ�

and ψ̄�ψ couplings to the Higgs field. Thus, it does not have
the form that allows us to relate immediately the states to
eigenfunctions of some differential operator. To overcome
this difficulty we pass to doubled spinors following the
approach developed in the paper [22] (see also [23,24]).
We introduce

Ψ ≔
�

ψ

ψ̄T

�
: ð5Þ

With the help of identities

Z
d3xψ̄γμði∂μ − eAμÞψ ¼

Z
d3xψTγμTði∂μ þ eAμÞψ̄T;

ψ̄Cψ ¼ ψTγ0ψ ; ψ̄ψC ¼ −ψ̄γ0ψ̄T; −mψ̄ψ ¼mψT ψ̄T

we rewrite the action as

S ¼ 1

2

Z
d3xΨTF̂Ψ ð6Þ

with

F̂ ¼
�

ig�ϕ�γ0 γμTði∂μ þ eAμÞ þm

γμði∂μ − eAμÞ −m igϕγ0

�
: ð7Þ

The corresponding Hamiltonian reads

H ¼
�
αjði∂j − eAjÞ− βm igϕ

−ig�ϕ� −αjði∂j þ eAjÞ− βm

�
: ð8Þ

Here, as usual, β≡ γ0 and αj ¼ βγj.
Let us consider the effective action W which is obtained

by integrating out the fermionic degrees of freedom,

eiW ¼
Z

DψDψ̄ exp

�
i
Z

d3xL
�
: ð9Þ

This action depends on the background bosonic fields ϕ
and Aμ. The charge density is given by the variational
derivative
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j0 ¼ −
1

e
δW
δA0

: ð10Þ

The same effective action W can be written through a path
integral over the doubled spinors Ψ as

W ¼ −i ln
Z

DΨ exp

�
i
1

2

Z
d3xΨTF̂Ψ

�

¼ −
i
2
ln detðF̂Þ; ð11Þ

(see [22]). The functional integration measure became
DΨ ¼ DψDψ̄ .
In Appendix we present an alternative derivation of

Eq. (11). This derivation does not use the doubled spinorΨ.
However, one has to deal with ill-defined expressions at
intermediate steps.
Symbolically, we may write

j0 ¼ i
2e

Tr

�
δF̂
δA0

F̂−1
�
: ð12Þ

To give precise meaning to this formula one has to invert F̂
and regularize the functional trace.
After having calculated the variational derivative in (12)

one puts the background fields to their values for the static
vortex configuration. On such a background, the eigen-
functions of Hamiltonian (8) can be taken depending on the
spatial coordinates x⃗ only,

HΨnðx⃗Þ ¼ EnΨnðx⃗Þ: ð13Þ

The energy spectrum has both discrete and continuous
parts. To avoid notation clutter we write the formulas below
as if the whole spectrum were discrete.
For g ¼ 0, the Hamiltonian H consists of two Hermitian

anticommuting parts. Thus one can easily show that
ðHðg ¼ 0ÞÞ2 ≥ m2. Consequently, if jmj > jgϕj the full
Hamiltonian does not have zero energy eigenstates.
The vectors

Ψω;nðx⃗; tÞ ¼ ð2πÞ−1=2e−iωtΨnðx⃗Þ ð14Þ

form a basis for the space of square integrable four-spinors
onR3. To compute (12) one has to sandwich the expression
under the trace between Ψ†

ω;n and Ψω;n, integrate over ω,
and sum over n. To regularize the ω integral we use a
symmetric time-splitting regularization. Namely, we take
two eigenvectors at shifted time arguments, Ψ†

ω;nðx⃗; tÞ and
Ψω;nðx⃗; tþ ΔtÞ. After computing the integral, we take the
limits 1

2
ðlimΔt→þ0þ limΔt→−0Þ. To regularize the sum, we

multiply the expression by jEnj−s withℜs sufficiently large
to ensure the convergence and analytically continue to
s ¼ 0 afterwards.

j0ðx⃗; tÞ ¼ −
i
2

1

2
ð lim
Δt→þ0

þ lim
Δt→−0

Þ
Z

∞

−∞

dω
2π

X
n

jEnj−s

×Ψ†
nðx⃗Þ

�
1 0

0 −1

�
Ψnðx⃗Þ

e−iωΔt

ωþ i0sgnðωÞ − En
:

ð15Þ

After performing the integration over ω one obtains

j0ðx⃗;tÞ¼−
1

4

X
n

Ψ†
nðx⃗Þ

�
1 0

0 −1

�
Ψnðx⃗ÞsgnðEnÞjEnj−s ð16Þ

The analytic continuation to s ¼ 0 is understood in both
formulas (15) and (16).
Let Q be a smooth bounded matrix-valued function

(a smooth endomorphism). The η function of H smeared
with Q is defined as

ηðs;H;QÞ ¼ TrðQsgnðHÞjHj−sÞ
¼ TrðQ · ðH2Þ−s=2 · ðH=jHjÞÞ
¼ TrðQ · ðH2Þ−sþ1

2 HÞ: ð17Þ

Here again s is a complex parameter. The trace in (17)
exists if ℜs is sufficiently large. This function can be
analytically continued as a meromorphic function to the
whole complex plane. At s ¼ 0, Eq. (16) yields

Z
d2xj0ðxÞρðxÞ ¼ −

1

4
ηð0; H; ρτ3Þ; ð18Þ

where ρ is a smooth localizing function of compact support,
and τ3 ¼ ð1

0
0
−1Þ. An integrated version of (16) gives an

expression for the fermion number N in terms of the η
function,

N ≡
Z

d2xj0ðxÞ ¼ −
1

4
ηð0; H; τ3Þ: ð19Þ

There are two important differences from the correspond-
ing formula derived in the seminal paper [12]. These are the
coefficient 1=4 instead of 1=2 and the presence of τ3 in the
η function. Both are caused by our spinor field doubling
procedure. The presence of τ3 has a profound consequence;
the standard proof that ηð0Þ is topological in 2D does not
work anymore.

III. HEAT KERNEL COMPUTATIONS
OF THE FERMION CURRENT

A. Why the standard proof of N being topological
does not work for the JR model

Here we study local variations of the η-function with and
without a matrix weighting factor. Our method goes back to
the paper by Atiyah, Patodi and Singer[25]. We closely
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follow the procedure presented in [26]. A slightly different
method was used in [27].
Let HðεÞ ¼ H þ εh where h is a perturbation caused by

an infinitesimal localized variation of background bosonic
fields ϕ and A. Let us consider the case Q ¼ 1. By using
Lemma 1.10.2 of [26] we can express the variation of the η
function through a ζ function weighted with h

d
dε

����
ε¼0

ηðs;HðεÞÞ ¼ −sTr½hðH2Þ−sþ1
2 �

¼ −sζ
�
sþ 1

2
; H2; h

�
: ð20Þ

Now, we need some basics on the spectral functions. Let L
be a Laplace type operator on a manifoldM of dimension n
with or without boundary. Let h be a smooth matrix valued
function. Then, residues of the ζ function can be expressed
by the formula

Resu¼n−k
2
ðΓðuÞζðu; L; hÞÞ ¼ akðL; hÞ; ð21Þ

through the heat kernel coefficients defined through the
following asymptotic expansion at t → þ0

Trðhe−tLÞ ≃
X∞
k¼0

t
k−n
2 akðL; hÞ: ð22Þ

By Eq. (20), the derivative ðdηð0; HÞÞ=ðdεÞjε¼0 is given by
the residue of the ζðu;H2; hÞ function at u ¼ 1

2
which is in

turn proportional to a1ðH2;hÞ. Since h is localized inside
the manifold and does not extend to boundaries or
asymptotic regions, the coefficient a1ðH2; hÞ vanishes.
We conclude that ηð0; HÞ does not change under local
variations H → HðεÞ ¼ H þ εh and thus is a topological
invariant.
The key point of the proof presented above was Eq. (20)

relating the variation of the η function to a residue of the ζ
function which happened to be local and vanishing in the
dimension n ¼ 2. Roughly speaking, to get (20) one needs
to differentiate ηð0; HÞ as if it were a usual function of a
commutative variable. This property is ensured by the
possibility of reordering operators under the trace. This
possibility is (partially) lost ifQ does not commute withH.
In such a case, the variation of ηð0; H;QÞ cannot be written
in the simple form of (20) and all subsequent arguments
break down.

B. Computations for the Jackiw-Rossi model

To evaluate the large mass expansion of the current (18)
we shall use the method proposed in [28,29]. With the help
of the identity

Z
∞

0

dttae−bt ¼ b−ð1þaÞΓð1þ aÞ ð23Þ

we write

ηðs;H; ρτ3Þ ¼
1

Γðsþ1
2
Þ
Z

∞

0

dtt
s−1
2 Trðρτ3He−tH

2Þ: ð24Þ

Let us introduce a shifted operator Hρ ¼ H − ερτ3 with ε
being a real parameter. Then

ηðs;H; ρτ3Þ ¼
1

2Γðsþ1
2
Þ
Z

∞

0

dtt
s−3
2
d
dε

����
ε¼0

Trðe−tH2
ρÞ: ð25Þ

To evaluate this expression by using a large mass expansion
we isolate m2 in H2

ρ and take the limit s → 0 to obtain

ηð0; H; ρτ3Þ ¼
1

2
ffiffiffi
π

p
Z

∞

0

dtt−
3
2
d
dε

����
ε¼0

e−tm
2

Trðe−tH̃2
ρÞ; ð26Þ

where H̃2
ρ ≡H2

ρ −m2. Next, we make the heat kernel
expansion (22) and integrate over t,

ηð0;H;ρτ3Þ≃
1

2
ffiffiffi
π

p
Z

∞

0

dt
X∞
k¼0

t
k−5
2
d
dε

����
ε¼0

akðH̃2
ρÞe−tm2

¼ 1

2
ffiffiffi
π

p
X
k

Γ
�
k−3

2

�
jmj3−k d

dε

����
ε¼0

akðH̃2
ρÞ: ð27Þ

Here akðH̃2
ρÞ≡ akðH̃2

ρ; 1Þ. The integral above is convergent
if the contributions of the heat kernel coefficients ak with
k ≤ 3 vanish. We shall check this condition below.
To be able to use universal expressions for the heat

kernel coefficients (see, e.g., [30]) we represent the
operator H̃2

ρ in the canonical form

H̃2
ρ ¼ −ð∇j∇j þ EÞ; ð28Þ

where∇j ¼ ∂j þ ωj plays the role of a covariant derivative
while E is a matrix valued potential. For our operator they
read

E ¼
� e

2
βϵjkFjk − jgϕj2 gαjDjϕþ 2iβgϕm

g�αjDjϕ
� − 2iβg�ϕ�m − e

2
βϵjkFjk − jgϕj2

�

− 2ερβm

�
1 0

0 −1

�
ð29Þ

ωj ¼
�
ieAj 0

0 −ieAj

�
þ iαjερ ð30Þ

In this section, we are working in a Euclidean space with a
positive unit metric. We still keep the distinction between
upper and lower indices of some quantities which have a
(2þ 1) dimensional origin. For example, A always appears
with a subscript, while α and γ come with superscripts. The
summation over repeated indices is always done with the
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Kronecker symbol independently of the position of indices.
This prescription destroys the balance between upper and
lower indices within formulas, but keeps the notations
simple and unambiguous.

Each heat kernel coefficient, ak, is an integral of a trace
of a local polynomial constructed from E, the field strength
Ωij ¼ ½∇i;∇j�, and their repeated covariant derivatives
(e.g., E;j ¼ ½∇j; E�, etc). For example,

E;j ¼
� e

2
β∂jðϵklFklÞ − 2εβm∂jρ − ∂jjgϕj2 gαkðDjDkϕÞ þ 2igβmðDjϕÞ
g�αkðDjDkϕ

�Þ − 2ig�βmðDjϕ
�Þ − e

2
β∂jðϵklFklÞ þ 2εβm∂jρ − ∂jjgϕj2

�

þ
�

−iγjeϵklFkl 2gβϵjkðDkϕÞ þ 4γjmgϕ

2g�βϵjkðDkϕ
�Þ − 4γjmg�ϕ� iγjeϵklFkl

�
ερ ð31Þ

and

Ωij ¼
�
ieFij þ iεðαjð∂iρÞ − αið∂jρÞÞ 0

0 −ieFij þ iεðαjð∂iρÞ − αið∂jρÞÞ

�
: ð32Þ

All invariants entering ak have the canonical mass dimen-
sion k. On manifolds without boundaries, all coefficients
with odd values of k vanish.
By a direct computation with the expressions from [30],

one obtains that the contributions of a0 and a2 to (27)
vanish thus fulfilling the consistency condition presented
below (27).
Let us compute the current as an expansion in ϕ and its

derivatives keeping the terms up to D2 and ϕ2. Since
½Dj;Dk� ∝ Fjk we shall also keep the terms with F and
Fϕ2, while m can enter with any power.
It is important to establish upper bounds on the number k

of the heat kernel coefficient which contains the required
invariants. Consider the term ρϵjkFjk. It has canonical mass
dimension three. Thus, in ak it has to be multiplied bymk−3.
Since ω does not containm, this requires product of E or of
its derivatives at least k − 3 times—an expression which
has the mass dimension greater than or equal to 2ðk − 3Þ.
Since the mass dimension of ak is k, we have the upper
bound k ≤ 6. In a similar way one comes to the conclusion
that ρðDϕÞðDϕ�Þ and ρjgϕj2F terms may appear for
k ≤ 10. By refining these arguments one can exclude a
lot of possible terms in the expansion and even improve
the bounds mentioned above. At any rate, with explicit
expressions from [31] for flat space heat kernel coefficients
up to a12, the rest may be done by a Wolfram Mathematica
script.
We obtain that, up to the order considered, just a few

terms in the heat kernel expansion contribute. The result
reads

a4 ¼
1

4π

Z
d2xtr

�
1

2
E2 þ � � �

�

¼ −
1

π

Z
d2xeϵjkFjkερmþ � � � ; ð33Þ

a6 ¼
1

4π

Z
d2xtr

�
1

6
E3 −

1

12
E;jE;j þ � � �

�

¼ 1

π

Z
d2xερmjgj2ϵjk

�
i
3
ðDjϕÞðDkϕ

�Þ þ 5e
3
jϕj2Fjk

�

þ � � � ; ð34Þ

a8 ¼
1

4π

Z
d2xtr

�
1

24
E4 þ � � �

�

¼ −
2

3π

Z
d2xem3jgϕj2ερϵjkFjk þ � � � ; ð35Þ

where dots denote irrelevant terms.
Thus, in the approximation adopted here,

j0 ¼ 1

8π

m
jmj

�
eϵjkFjk −

ijgj2
6m2

ϵjkðDjϕÞðDkϕ
�Þ

−
jgϕj2
3m2

eϵjkFjk

�
: ð36Þ

The integral of j0 gives the vacuum fermion number

N ¼ N
4

m
jmj −

jgj2e
48πmjmj

Z
d2xjϕj2ϵjkFjk: ð37Þ

To obtain this expression we integrated by parts and used
the asymptotic conditions (3) together with the relation (4).
The first term on right hand side of (37) describes the
(expected)1 quarter-integer quantization of the fermion

1Note that by repeating the same calculations for ϕ ¼ 0 one
gets that the nonweighted η function vanishes, ηð0; H; 1Þ ¼ 0.
This quantity thus cannot describe the vacuum fermion number as
this would contradict the well know result by Niemi and
Semenoff [12].
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number in the absence of scalar field ϕ. The second term
depends on the profiles of jϕj2 and Fjk in the interior of
manifold and thus is not topological.

IV. CONCLUSIONS

In this paper, we have expressed the vacuum fermion
number of the Jackiw-Rossi model through an η-invariant
of a matrix-weighted Hamiltonian. We have pinpointed the
reason why the standard proof of the topological nature of
the (fractional) fermion number fails and we have also
explicitly computed a nontopological contribution to this
quantity.
We have computed the fermion current in just a few

leading orders of the large mass expansion, since this was
enough for our purposes. If needed, further terms can also
be calculated with the help of the flat space heat kernel
expansion from the paper [31]. One can also use resum-
mations of the heat kernel, see [32,33].
The fact that the fermion number depends on the profiles

of the magnetic field and of the Higgs field should have
some consequences for condensed matter physics. We are
not ready to go deeper into this subject. We just mention a
potentially related work which studies, both theoretically
and experimentally, the influence of nonuniformity of the
magnetic field on Hall conductivity for various planar
systems [34].
Speaking about future prospects, we would also like to

mention the work [35] which studies relations between the
parameters of solitons and the fermion spectrum. Probably,
these results can be lifted to the quantum level to gain

information about the fermion fractionization and other
similar effects.
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APPENDIX: ALTERNATIVE DERIVATION
OF THE EFFECTIVE ACTION

According to the general rules of path integration over
Dirac spinors, the fields ψ and ψ̄ are independent variables.
Thus, we can change one of the integration variables

ψ → χ; ψ ¼ χ − Λψ̄T;

Λ≡ ðig�ϕ�γ0Þ−1ðγμTði∂μ þ eAμÞ þmÞ ðA1Þ

without changing the other one. In terms of the new
variables the action reads

S ¼ 1

2

Z
d3x½χT ig�ϕ�γ0χ þ ψ̄ðigϕγ0 − ðγμði∂μ − eAμÞ −mÞðig�ϕ�γ0Þ−1ðγμTði∂μ þ eAμÞ þmÞÞψ̄T �: ðA2Þ

The change of the variables (A1) is a shift. It does not introduce any Jacobian factor, DψDψ̄ ¼ DχDψ̄ . Thus, the path
integral (9) yields

eiW ¼
Z

DχDψ̄eiS

¼ ½detðig�ϕ�γ0Þ · detðigϕγ0 − ðγμði∂μ − eAμÞ −mÞðig�ϕ�γ0Þ−1ðγμTði∂μ þ eAμÞ þmÞÞ�1=2:

After taking into account the formula

det

�
A B

C D

�
¼ detA · detðD − CA−1BÞ ðA3Þ

for determinants of block operators we reproduce Eq. (11) for the effective action. During the derivation we used an ill-
defined expression ðig�ϕ�γ0Þ−1 which is cancelled in the final result for the effective action. The doubling trick from the
main text allows to avoid any ill-defined expressions at intermediate steps.
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