T. 64, № 3

ФИЗИКА

УДК 531.1

DOI: 10.17223/00213411/64/3/121

С.К. АБДУЛВАГАБОВА¹, И.К. ЭФЕНДИЕВА²

ЗАСЕЛЕНИЕ 0⁺-ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РЕАКЦИЯХ С ПЕРЕДАЧЕЙ ДВУХ НУКЛОНОВ

Исследованы свойства 0^+ -возбужденных состояний, генерированных парными и квадруполь-квадрупольными силами в некоторых изотопах редкоземельной области. Вычислены энергии 0^+ -состояний, вероятности E(0)- и E(2)-переходов, параметр Расмуссена X и эффективные сечения реакций с передачей двух нуклонов с учетом смешивания возбужденных состояний с разными значениями K^{π} . Вклад смешивания возбужденных состояний с тояний занижает значения вычисленных физических величин.

Ключевые слова: возбужденное состояние, монопольные и квадрупольные переходы, эффективное сечение.

Введение

 0^+ -Возбужденные состояния всегда были объектом особого интереса в изучении структуры четно-четных ядер. В связи с этим возросло число экспериментальных и теоретических исследовательских работ, посвященных ядрам из области редких земель [1-11]. Такие возбужденные состояния были изучены разными методами: в рамках модели оболочек, квазичастичной модели, модели с учетом остаточных парных взаимодействий и т.д. и служат тестом при оценке применимости различных моделей. На основе данных о низколежащих 0⁺-возбужденных состояниях ядер редкоземельной области можно сказать, что большинство из них не являются парными вибрациями, так как энергия этих состояний значительно меньше величины энергетической щели. Природа 0^+ -возбужденных состояний очень сложная, так как они могут быть многофононными, квазичастично-фононными и смешанными остаточными состояниями. Заселенность этих состояний в (t, p)- и (p, t)-реакциях и кулоновское возбуждение редкоземельных ядер приводят к выводу, что эти состояния значительно коллективизированы [12-15]. В работе [15] показано, что в реакциях передачи двух нуклонов 0^+ -уровни будут сильнее возбуждаться в деформированных ядрах, у которых одночастичные квадрупольные моменты вблизи поверхности Ферми имеют одинаковый знак. Это приводит к выводу о важной роли квадруполь-квадрупольного взаимодействия – той части взаимодействия, которая не сводится к среднему полю.

Некоторые выводы, сделанные на основе цитированных работ, побудили нас провести аналогичное исследование для некоторых ядер редкоземельной области, что и явилось целью данной работы. В работе вычислены энергии и основные характеристики 0⁺-состояний: вероятности E(2)-, E(0)-переходов, параметр Расмуссена X и эффективные сечения (p, t)- и (t, p)-реакций с учетом смешивания возбужденных состояний.

Выражение для матрицы реакции (t, p)

Выражение для матрицы реакции (p, t) было получено в работе [16] на основе кластерной модели с учетом возбужденных состояний кластеров. В данной работе мы получим выражение для матрицы реакции (t, p).

Представим, что тритон, состоящий из двух частей – протона *p* и бинейтронного кластера *X* (t = p+2n), налетает на ядро *A*. При захвате ядром *A* бинейтрона *X* вылетает протон и возникает ядро *B*, где B = A + X. Волновая функция тритона записывается в виде произведения волновых функций протона $\Psi_p(\xi_p)$, бинейтрона $\Psi_X(\xi_X)$ и их взаимного движения $\Psi_{pX}(\rho)$:

$$\Psi_t\left(\xi_p,\xi_X,\rho\right) = \hat{P}\Psi_p\left(\xi_p\right)\Psi_X\left(\xi_X\right)\Psi_{pX}\left(\rho\right). \tag{1}$$

В (1) относительная координата ρ – расстояние от протона до центра тяжести бинейтрона – задается формулой

$$\rho = r_p - \frac{1}{2} \sum_{i=1}^{2} r_i \ . \tag{2}$$

Функция $\Psi_X(\xi_X)$ является антисимметричной, а антисимметризация по перестановкам нуклонов бинейтрона обеспечивается оператором \hat{P} :

$$\hat{P}\Psi_X(\xi_X) = \sum_P (-1)^P P\Psi(\xi_X).$$
(3)

Волновая функция начального состояния имеет вид

$$\Psi_i = \Psi_A(\xi) \Psi_t(\xi_p, \xi_X, \rho), \tag{4}$$

где $\Psi_A(\xi)$ – волновая функция начального ядра.

Функция конечного состояния описывает состояние ядра *В* и свободного движения протона. Ее можно представить в виде

$$\Psi_f = \Psi_B(\xi, R) f(r_p), \tag{5}$$

где $f(r_p)$ – искаженная функция протона; R – радиус бинейтрона.

Вероятность E(0)-переходов, которая определяется недиагональным матричным элементом монопольного оператора, интерпретировать довольно трудно. Эти переходы свидетельствуют о сосуществовании в ядре состояний, существенно различающихся по форме, и о сильном смешивании сферических и деформированных волновых функций. Запрещенные переходы по K^{π} можно описать, если учесть смешивание возбужденных состояний с разными значениями K^{π} . В этом случае в выражение (5) вводится дополнительное слагаемое, характеризующее смешивание возбужденных состояний

$$\Psi_f = f\left(r_p\right) \left[\Psi_B\left(\xi, R\right) + \sum_{\xi', R'} \Psi_B\left(\xi', R'\right)\right].$$
(6)

Основное и возбужденные состояния отличаются только квантовыми числами. С ростом энергии возбуждения происходит быстрое увеличение плотностей уровней и усложняется структура волновых функций.

Матричный элемент перехода из состояния *i* в состояние *f* можно записать как

$$M_{i \to f} = \int \Psi_f V \Psi_i d\xi_i d\xi_f \,. \tag{7}$$

Потенциал V будем выбирать в следующем виде:

$$V = V_{av} + V_{\text{pair}} + V_Q.$$
(8)

Здесь V_{av} – потенциал Саксона – Вудса, описывает среднее поле; V_{pair} – остаточное парное и V_Q – дальнодействующее остаточное квадруполь-квадрупольное взаимодействие. С помощью такого потенциала можно описать квазичастичные и коллективные возбуждения в сферических и деформированных ядрах. Дальнодействующие V_Q -потенциалы в деформированных ядрах приводят к интенсивному взаимодействию пар квазичастиц в состояниях $K^{\pi} = 0^+, 2^+, \dots$. В результате появляются сильно коллективизированные низколежащие состояния с соответствующими квантовыми числами.

Эффективное сечение для реакции рассмотренного процесса может быть записано в следующем общем виде:

$$d\sigma = \frac{E_t E_A}{\lambda^{1/2} (m_t^2 + M_A^2) (2J_t + 1)} \sum (2\pi)^4 \delta^4 (P_t + P_A - P_p - P_B) \left| M_{if} \right|^2 dP_t,$$
(9)

где $E_t = (p_t^2 + m_t^2)^{1/2}$ и $E_A = (P_A^2 + m_A^2)^{1/2}$ – энергии налетающего *t* и ядра *A* соответственно; $\lambda(x, y, z) = (x - y - z)^2 - 4 yz$ – кинематическая функция.

Результаты расчетов и их обсуждение

Основные формулы E(0)-, E(2)-переходов приведены в работе [14]. При вычислении использовались следующие значения эффективных зарядов для вероятностей E(0)- и E(2)-переходов: $e_{\text{eff}} = 0.2$ для E(0)-переходов; $e_{\text{eff}} = 0.3$ для E(2)-переходов. Силовой параметр квадруполь-квадрупольного взаимодействия для рассматриваемых ядер был выбран $k_a = 0.05$ МэВ.

Экспериментальные данные [2–6] и результаты расчетов суммированы в таблице. Приведены результаты двух вариантов расчетов: теория 1 соответствует случаю, когда смешивание возбужденных состояний не учитывается; теория 2 – когда учитывается смешивание возбужденных состояний с разными значениями K^{π} . Параметры потенциала Вудса – Саксона взяты из [11].

	r													
	Ядро		Sm	152			Sm	154		Sm ¹⁵⁶				
Теория 1	ω, МэВ	0.68	1.09	1.66		1.10	2.10	2.25		1.07	2.06	2.19		
	$B(E2)_{s.p.u.}$	10.78	0.04	0.15		7.80	0.13	0.02		9.60	0.01	0.20		
	ρ(<i>E</i>)	0.37	0.05	0.08		0.41	0.06	0.04		0.14	0.02	0.09		
	X	0.14	0.49	0.41		0.15	0.21	0.60		0.15	0.35	0.31		
	$\sigma(p,t)/\sigma_0$	0.72	0.07	0.02		1.33	0.07	0.01		1.46	0.01	0.01		
	$\sigma(t,p)/\sigma_0$	2.63	1.52	0.07		1.26	0.02	0.02		1.56	0.02	0.01		
Теория 2	ω, МэВ	0.68	1.05	2.02	2.83	1.10	1.85	2.15	2.47	1.07	1.64	2.18	2.81	
	$B(E2)_{s.p.u.}$	7.62	2.40	0.26	0.04	5.11	0.11	0.13	0.01	0.56	3.43	0.02	0.18	
	ρ(<i>E</i>)	0.31	0.23	0.03	0.01	0.21	0.22	0.08	0.03	0.05	0.23	0.08	0.11	
	X	0.12	0.36	0.32	0.06	0.12	0.15	0.18	0.51	0.09	0.21	0.21	0.18	
	$\sigma(p,t)/\sigma_0$	0.35	0.06	0.03	0.74	0.18	0.29	0.18	0.21	0.06	0.02	0.06	0.05	
	$\sigma(t,p)/\sigma_0$	1.04	1.01	0.01	0.01	0.21	0.33	0.01	0.02	0.47	0.21	0.02	0.01	
Эксперимент	ω, МэВ	0.68	1.08	1.76		1.10	1.22	-	-	1.07	-	-	-	
	$B(E2)_{s.p.u.}$	6.5	-	-	-	1.2	< 0.01	-	-	-	-	-	-	
	ρ(<i>E</i>)	0.26	-	-	-	-	-	-	-	-	-	-	-	
	X	0.07	-	-	-	-	-	-	-	-	-	-	-	
	$\sigma(p,t)/\sigma_0$	0.28	< 0.01	0	1.00			-	-	-	-	-	-	
	$\sigma(t,p)/\sigma_0$	0.74	0.68	0.02	-	0.10	0.33	-	-	0.07	-	-	-	

	Ядро			156	Gd		¹⁵⁸ Gd						
Теория 1	ω, МэВ	0.68	1.94	2.14		1.05	1.80	1.98		1.20	1.97	2.13	
	$B(E2)_{\text{s.p.u.}}$	7.63	0.04	0.01		6.51	0.37	0.04		7.7	0.02	0.21	
	ρ(<i>E</i>)	0.39	0.03	0.01		0.37	0.09	0.03		0.41	0.02	0.07	
	Х	0.14	0.17	0.69		0.15	0.24	0.19		0.15	0.24	0.19	
	$\sigma(p,t)/\sigma_0$	3.35	0.01	0.02		1.63	0.24	0.01		1.04	0.01	0.01	
	$\sigma(t,p)/\sigma_0$	2.13	0.03	0.08		1.58	0.01	0.04		1.50	0.02	0.02	
Теория 2	ω, МэВ	0.69	1.35	1.51	2.14	1.02	1.23	1.81	2.14	1.20	1.68	2.11	2.95
	$B(E2)_{\text{s.p.u.}}$	5.40	6.03	0.02	0.01	3.90	2.01	0.12	0.06	5.87	1.04	0.57	0.33
	ρ(<i>E</i>)	0.21	0.18	0.04	0.02	0.38	0.21	0.12	0.04	0.12	0.22	0.03	0.04
	X	0.13	0.15	0.13	0.69	0.08	0.13	0.11	0.09	0.12	0.19	0.17	0.24
	$\sigma(p,t)/\sigma_0$	2.40	0.67	0.04	0.02	1.04	0.21	0.14	0.01	0.61	0.09	0.01	0.01
	$\sigma(t,p)/\sigma_0$	1.43	0.29	0.02	0.02	1.42	0.14	0.01	0.01	0.94	0.12	0.01	0.02
Эксперимент	ω, МэВ	0.68	1.18	1.295	-	1.05	1.17	1.71	1.85	1.20	1.45	-	-
	B(E2)	0.51	100	-	-	2.8	-	-	-	-	-	-	
	ρ(<i>E</i>)	0.31	-	-	-	0.41	-	-	-	-	-	-	-
	X	0.11	-	-	-	0.10	-	-	-	-	-	-	-
	$\sigma(p,t)/\sigma_0$	0.13	-	-	-	0.11	-	-	-	-	0.20	-	-
	$\sigma(t,p)/\sigma_0$	-	-	-	-		-	-	-	-	-	-	-

Кратко обсудим полученные результаты. Как видно из таблицы, теория 1 приводит к завышенным значениям эффективного сечения реакций для первого возбужденного состояния. Вклад смешивания возбужденных состояний занижает значения эффективного сечения. Это связано с тем, что при учете возбужденных состояний сечение зависит от различных состояний выбиваемого в (p, t) или захватываемого в (t, p) бинейтронного кластера и относительного движения кластеров. Волновая функция $\Psi_{A_{1}X}(\rho)$ относительного движения кластеров отличается для возбужденных и основных состояний кластеров. При высоких энергиях падающей частицы – протона или тритона – взаимодействие происходит внутри ядра, и чем глубже внутрь ядра втянута волновая функция $\Psi_{A_{1}X}(\rho)$, тем больше энергия связи в состоянии со смешиванием по сравнению с состоянием без смешивания. Увеличение энергии связи кластера приводит к уменьшению значения эффективного сечения.

По данным таблицы следует, что рассчитанные значения энергий оказались выше экспериментальных примерно на 0.2 МэВ, что наводит на мысль о неколлективной природе этих состояний. Во всех рассмотренных ядрах значения $\rho(E0)$ значительно меньше одночастичной оценки. Для первого возбужденного состояния удовлетворительно согласуются с экспериментом значения B(E2) и эффективные сечения реакций. С учетом смешивания возбужденных состояний (теория 2) уменьшаются B(E2) и $\rho(E0)$, а также и параметр X. С ростом энергии значения B(E2), $\rho(E0)$ и эффективные сечения малы, а параметр X колеблется в широких пределах. Для большинства рассмотренных ядер эффективные сечения в реакциях (p, t) и (t, p) имеют довольно близкие значения. Только для ядер с N = 90 (152 Sm и 154 Gd), которые находятся на границе области «выстроенности» квадрупольных моментов, эффективные сечения (p, t)- и (t, p)-реакций заметно отличаются. Кроме того, структура этих ядер имеет почти вырожденный характер, что приводит к увеличению интенсивности E(0)-перехода.

При сравнении с экспериментом важную роль играет выбор параметров деформации, которые могут существенно влиять на возбуждение 0^+ -состояний в реакциях (p, t) и (t, p). В ядрах переходной области сильное заселение возбужденных 0^+ -состояний в реакциях (p, t) и (t, p) происходит в тех случаях, когда деформация возбужденного состояния дочернего ядра совпадает с деформацией основного состояния материнского ядра. Именно этим объясняется различное возбуждение 0^+ -состояний, а также различное сравнительное поведение сечений в реакциях (p, t) и (t, p) В наших расчетах для всех исследуемых ядер были использованы одинаковые параметры деформации, что не отвечает реальной ситуации. В двухнуклонных реакциях переноса, в отличие от более простых однонуклонных, мы не можем извлечь спектральную амплитуды, вообще говоря, можно предсказать только в предельных случаях, когда соответствующие ядра либо сферические, либо деформированные, тогда как для ядер в переходной области удовлетворительный формализм пока недоступен.

Заключение

Таким образом, анализируя теоретические и экспериментальные результаты можно сказать, что низколежащие 0^+ -возбужденные состояния редкоземельных ядер не являются чистыми состояниями какого-то определенного типа движения. Для количественного объяснения, кроме определенного вида движения, нужны точные знания о механизме реакции передачи двух нуклонов, а также уточнение динамики самосогласованного поля ядер, особенно для ядер на границе переходной области.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wood J.L. // J. Phys.: Conf. Ser. 2012. V. 403. P. 012011. DOI: 10.1088/1742-6596/403/1/012011.
- 2. Kulp W.D. et al. // Phys. Rev. C. 2008. V. 77. P. 061301(R).
- 3. Kulp W.D. et al. // Phys. Rev. Lett. 2003. V. 91(10). P. 102501.
- 4. Meyer D.A. et al. // Phys. Rev. C. -2006. V. 74. P. 044309.
- 5. Girit C., Hamilton W.D., and Kalfas C.A. // J. Phys. G: Nucl. Phys. 1983. V. 9. No. 7. P. 797-823.
- 6. Lesher S.R. et al. // Phys. Rev. C. 2002. V. 66. P. 051305(R).
- 7. Yang Sun et al. // Phys. Rev. C. 2003. V. 68. P. 061301(R).
- 8. Heyde K. and Wood J.L. // Rev. Mod. Phys. 2011. V. 83. P. 1467.

- 9. Zamfir N.V., Zhang J., and Casten R. // Phys Rev. C. 2002. V. 66. P. 057303.
- 10. Borner H.G., et al. // Phys. Rev.C. 1999. V. 59. P. 2432.
- 11. Lesher S.R. et al. // AIP Conf. Proc. 2002. No. 610. P. 798.
- Shahabuddin M.A.M. et al. // Nucl. Phys. A. 1980. V. 340. Р. 109–116.
 Малов Л.А., Соловьев В.Г., Федотов С.П. // Изв. АН СССР. Сер. физич. 1971. № 35. C. 747–757.
- 14. Abdulvahabova S.G., Barkhalova N.Sh., and Bayramova T.O. // Proc. Star-Net. Modern Trends in Physics. - 2019. - P. 253-255.
- 15. Abdulvagabova S.K., Ivanova S.P., and Pyatov N.I. // Phys. Lett. B. 1972. V. 38. P. 215-217.
- 16. Абдулвагабова С.К., Эфендиева И.К. // Изв. вузов. Физика. 2020. Т. 63. № 4. С. 104–108.

Поступила в редакцию 09.07.19.

¹ Бакинский государственный университет, г. Баку, Азербайджанская Республика

²Азербайджанский государственный университет нефти и промышленности,

г. Баку, Азербайджанская Республика

Абдулвагабова Саджида Кафар кызы, профессор каф. строения вещества БГУ, e-mail: sajida.gafar@gmail.com; Эфендиева Ирада Кафар кызы, доцент каф. физики АГУНП, e-mail: irada.e@mail.ru.