ТЕЗИСЫ ДОКЛАДОВ

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ

«Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии»

6–10 сентября 2021 г. Томск, Россия

DOI: 10.17223/978-5-907442-03-0-2021-174

ОРИЕНТАЦИОННАЯ ЗАВИСИМОСТЬ МЕХАНИЧЕСКОГО ПОВЕДЕНИЯ МОНОКРИСТАЛЛОВ ВЫСОКОЭНТРОПИЙНОГО СПЛАВА (CoCrFeNi)94Al4Ti2, УПРОЧНЕННЫХ ЧАСТИЦАМИ γ' -ФАЗЫ

Сараева А.А., Выродова А.В., Победенная З.В., Киреева И.В., Чумляков Ю.И., Куксгаузен Д.А.

Национальный исследовательский Томский государственный университет, Томск

На монокристаллах ГЦК (CoCrFeNi) $_{94}$ Al $_{4}$ Ti $_{2}$ (ат.%) высокоэнтропийного сплава (ВЭС), ориентированных вдоль [$\overline{1}$ 44]- и [001]- направлений, при деформации растяжением исследовано влияние старения при 923 К в течение 4 часов на механическое поведение, тип дислокационной структуры и механизм деформации — скольжение/двойникование. Старение монокристаллов (CoCrFeNi) $_{94}$ Al $_{4}$ Ti $_{2}$ ВЭС при 923 К в течение 4 часов приводит к выделению упорядоченных по типу L1 $_{2}$ частиц γ' -фазы размером 3–5 нм.

Показано, что при выделении наноразмерных частиц у'-фазы температурная зависимость критических скалывающих напряжений $\tau_{kp}(T)$ в температурном интервале от 77 до 973 К имеет вид, как в закаленных кристаллах, характерный для ГЦК металлов и сплавов замещения при деформации скольжением и состоит из двух температурных интервалов. При T<373 K температурная зависимость наблюдается сильная $\tau_{\kappa p}(T)$, температурную зависимость модуля сдвига G(T) (термоактивируемая τ^S компонента $\tau_{\rm kp}$), а при Т>373 К $\tau_{\kappa p}$ (T) зависят от температуры как G(T) (атермическая τ^G компонента $\tau_{\kappa p}$). При выделении частиц γ' -фазы: 1) $\tau_{\kappa p}$ увеличиваются на 20–30 МПа во всем температурном интервале. 2) τ^{S} не изменяется, а τ^{G} растет и отношение τ^{S}/τ^{G} =1.05 становится меньше, чем в закаленных кристаллах, где τ^{S}/τ^{G} =1.42. Следовательно, имеет место ослабление температурной зависимости $au_{\kappa p}(T)$ за счет роста $au^G(T)$ при выделении частиц au'-фазы. 3) Начало пластического течения связано со скольжением и закон Боаса-Шмида - отсутствие зависимости $\tau_{\kappa p}$ от ориентации кристалла - выполняется в температурном интервале от 77 до 973 K.

Установлено, что при выделении наноразмерных частиц γ' -фазы развивается планарная дислокационная структура с плоскими скоплениями дислокаций в широком температурном интервале от 77 до 973 К. Взаимодействие скользящих дислокаций с наноразмерными частицами γ' -фазы происходит по механизму срезания. Развитие планарной структуры в состаренных монокристаллах (CoCrFeNi)₉₄Al₄Ti₂ ВЭС в широком температурном интервале обусловлено разупрочнением действующей системы скольжения при срезании наноразмерных частиц γ' -фазы скользящими дислокациями. Двойникование, которое в закаленных [$\overline{1}$ 44]- кристаллах наблюдается после 10 % деформации при 77 К, при выделении наноразмерных частиц γ' -фазы смещается в область больших деформаций.

В монокристаллах (CoCrFeNi) $_{94}$ Al $_4$ Ti $_2$ ВЭС при выделении наноразмерных частиц γ' -фазы и развитии планарной структуры в температурном интервале от 77 до 973 К коэффициент деформационного упрочнения Θ =do/de и пластичность ϵ при растяжении зависят от ориентации кристалла, механизма деформации, числа действующих систем скольжения и двойникования и температуры испытания. В [$\overline{1}44$]- кристаллах при развитии деформации только скольжением преимущественно в одной системе на стадии линейного упрочнения Θ =1000 МПа при 296 К, который увеличивается до 1700 МПа при 77 К после 40 % деформации, когда одновременно со скольжением развивается двойникование. В [001]-кристаллах при развитии скольжения в нескольких системах и образования мультиполей Θ в 1.5 раза выше, чем в [$\overline{1}44$]- кристаллах. Пластичность достигает 70 и 50 %, соответственно, в [$\overline{1}44$]- и [001]- кристаллах.

Работа выполнена при финансовой поддержке гранта РНФ № 19-19-00217.