№ 14 ПРИЛОЖЕНИЕ Сентябрь 2021

Секция 6

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ И ПРОГРАММИРОВАНИЯ

УДК 519.682

DOI 10.17223/2226308X/14/40

О РЕШЕНИИ ПОЛИНОМИАЛЬНЫХ ГРАММАТИК И ОБЩЕГО АЛГЕБРАИЧЕСКОГО УРАВНЕНИЯ

О. И. Егорушкин, И. В. Колбасина, К. В. Сафонов

Исследуется разрешимость формальных грамматик, под которыми подразумеваются системы некоммутативных полиномиальных уравнений, в случае одного уравнения. Формальные грамматики решаются в виде формальных степенных рядов (ФСР), которые выражают нетерминальные символы языка через терминальные символы; первая компонента решения и есть формальный язык. Авторы развивают метод, основанный на изучении коммутативного образа грамматики и языка, который получается, если во всяком ФСР символы алфавита считать коммутативными переменными. Получена теорема, которая даёт разложение в степенной ряд решения общего алгебраического уравнения, а также позволяет исследовать разрешимость в виде ФСР полиномиальной грамматики, состоящей из одного уравнения.

Ключевые слова: общее алгебраическое уравнение, полиномиальная грамматика, формальный степенной ряд, некоммутативные символы, коммутативный образ.

Как известно, теория формальных языков имеет фундаментальное значение не только для лингвистики, но и программирования. Наиболее важные для приложений классы формальных грамматик можно записать в виде системы полиномиальных уравнений с некоммутативными переменными [1, 2].

Следуя [3, 4], понимаем под полиномиальной грамматикой систему полиномиальных уравнений

$$P_j(z,x) = 0, \quad P_j(0,0) = 0, \quad j = 1, \dots, k,$$

которая решается относительно символов $z=(z_1,\ldots,z_n)$ в виде формальных степенных рядов, зависящих от символов $x=(x_1,\ldots,x_m)$.

Символы x_1, \ldots, x_m называются терминальными и образуют словарь языка, а символы z_1, \ldots, z_n — нетерминальными, они необходимы для задания грамматических правил. Над всеми символами определена некоммутативная операция конкатенации и коммутативные операции формального сложения и умножения на числа, а значит, можно рассматривать ФСР с числовыми коэффициентами. Мономы от терминальных символов интерпретируются как предложения языка, а каждый ФСР — сумма всех «правильных» мономов, который является решением полиномиальной системы, понимается как порождённый грамматикой язык [1, 2].

Исследовать системы с некоммутативными символами очень трудно, и потому в работах [3-5] предложено рассмотреть коммутативный образ полиномиальной грамматики: для Φ CP s коммутативный образ $\mathrm{ci}(s)$ получается в предположении, что все переменные коммутативны.

Трудность исследования полиномиальных грамматик имеет место даже в случае одного уравнения:

$$P_1(z,x) = 0.$$

Так, известно [3, 4], что одно уравнение с некоммутативными неизвестными может: не иметь решений; иметь любое конечное число решений; иметь бесконечно много решений. Поэтому случай некоммутативных переменных принципиально отличается от уравнения над полем комплексных чисел, которое всегда разрешимо.

Понятно, что достаточно рассмотреть общее алгебраическое уравнение

$$P_1(z,x) = x_n z^n + x_{n-1} z^{n-1} + \dots + x_1 z + x_0 = 0$$
(1)

относительно символа z (здесь $z=z_1$) и исследовать разложение неявной функции z=z(x), определяемой коммутативным образом уравнения (1) в степенной ряд либо ряд Лорана относительно переменных x_0, x_1, \ldots, x_n .

С одной стороны, решение уравнения (1) представляет интерес для теории формальных языков и грамматик, с другой — конструктивное решение общего алгебраического уравнения в виде функции от коэффициентов является фундаментальной математической задачей, имеющей многовековую историю.

Как известно, после открытия формул Кардано и Феррари для решения уравнений третьей и четвертой степени появилась некоторая надежда решать произвольное алгебраическое уравнение в радикалах, однако почти через триста лет, в 1826 г., Абель доказал невозможность этого для уравнений пятой и более высоких степеней. Точнее, Абель доказал, что если существует формула, выражающая в радикалах корни уравнения пятой степени через его коэффициенты, то в случае действительных коэффициентов уравнение имеет либо один действительный корень, либо пять (очевидно, такое уравнение может иметь лишь три действительных корня, а значит, формулы в радикалах не существует). С этого времени конструктивное представление решений вызывает особый интерес.

Конструктивное представление решения как функции от коэффициентов возможно в виде интегралов и рядов, что часто оказывается более удобным для приближённых вычислений. Так, в 1921 г. Меллин предложил решать общее уравнение с помощью гипергеометрических функций, причём разложение в ряд получено на основе интегрального представления Меллина — Барнса. В 1984 г. Умемура доказал разрешимость уравнения произвольной степени с помощью тэта-функций.

В принципе, получить разложение в ряд неявной функции $z = z(x_1, \ldots, x_n)$, определяемой функциональным уравнением

$$F(z,x_1,\ldots,x_n)=0,$$

не очень сложно. Как правило, такие разложения содержат оператор дифференцирования возрастающего порядка, либо коэффициенты степенного разложения даются формулой с возрастающим числом слагаемых.

Теперь наша цель — найти конструктивный способ разложить в ряд неявную функцию z(x), заданную коммутативным образом уравнением (1), если возможно, в «замкнутом виде». Идея состоит в том, что функция z(x) — алгебраическая, и потому её ряд является диагональю ряда некоторой рациональной функции от переменных, число которых на 1 больше числа коэффициентов уравнения [6].

Рассмотрим произвольную ветвь z=z(x) решения уравнения (1), проходящую через точку (0,0) (достаточно считать, что такая ветвь единственная).

Теорема 1. Для функции, заданной коммутативным образом уравнения (1), имеет место разложение в ряд Лорана

$$z(x) = \sum_{k_2 + \dots + k_n \ge 1} (-1)^k \frac{(2k_2 + \dots + nk_n)!}{((n-1)k_n + \dots + k_2 + 1)!k_2! \dots k_n!} \times x_0^{(n-1)k_n + \dots + k_2 + 1} x_1^{-nk_n - \dots - 2k_2 - 1} x_2^{k_2} \cdot \dots \cdot x_n^{k_n}.$$

Поскольку в формуле решения степени переменной x_1 отрицательные, то решение исходного некоммутативного уравнения (1) в виде ФСР невозможно, таким образом, имеет место следующее

Следствие 1. Полиномиальная грамматика, порождённая уравнением (1), не имеет решения (не порождает полиномиального языка).

ЛИТЕРАТУРА

- 1. *Глушков В. М., Цейтлин Г. Е., Ющенко Е. Л.* Алгебра. Языки. Программирование. Киев: Наукова думка, 1973.
- 2. Salomaa A. and Soitolla M. Automata-Theoretic Aspects of Formal Power Series. N.Y.: Springer Verlag, 1978.
- 3. *Егорушкин О. И., Колбасина И. В., Сафонов К. В.* О совместности систем символьных полиномиальных уравнений и их приложении // Прикладная дискретная математика. Приложение. 2016. № 9. С. 119—121.
- 4. Egorushkin O. I., Kolbasina I. V., and Safonov K. V. On solvability of systems of symbolic polynomial equations // Журн. СФУ. Сер. Матем. и физ. 2016. Т. 9. Вып. 2. С. 166–172.
- 5. *Семёнов А. Л.* Алгоритмические проблемы для степенных рядов и контекстно-свободных грамматик // Докл. АН СССР. 1973. № 212. С. 50–52.
- 6. Safonov K. V. On power series of algebraic and rational functions in C^n // J. Math. Analysis Appl. 2000. V. 243. P. 261–277.

УДК 510.52

DOI 10.17223/2226308X/14/41

О ГЕНЕРИЧЕСКОЙ СЛОЖНОСТИ ПРОБЛЕМЫ ИЗОМОРФИЗМА КОНЕЧНЫХ ПОЛУГРУПП

А. Н. Рыбалов

Изучается генерическая сложность проблемы изоморфизма конечных полугрупп: по любым двум полугруппам одинакового порядка, заданным таблицами умножения, требуется определить, являются ли они изоморфиыми. К этой проблеме полиномиально сводится проблема изоморфизма конечных графов. Таким образом, проблема изоморфизма конечных полугрупп с вычислительной точки зрения не проще проблемы изоморфизма графов. Предлагается генерический полиномиальный алгоритм для проблемы изоморфизма конечных полугрупп. В его основе лежит характеризация почти всех конечных полугрупп как 3-нильпотентных полугрупп специального вида, а также полиномиальный алгоритм Боллобаша, решающий проблему изоморфизма для почти всех сильно разреженных графов.

Ключевые слова: генерическая сложность, конечные полугруппы, изомор ϕ изм.

Введение

Понятие изоморфизма является одним из важнейших понятий в современной математике. Изоморфные объекты имеют одинаковые математические свойства, одина-