Nanosize radiation defects in arsenic implanted HgCdTe epitaxial films of *n*- and *p*-type studied with TEM/HRTEM

Izhnin I.I.¹, Mynbaev K.D.², Swiatek Z.³, Morgiel J.³, Korotaev A.G.⁴, Voitsekhovskii A.V.⁴, Fitsych O.I.⁵, Varavin V.S.⁶, Dvoretsky S.A.^{4,6}, Mikhailov N.N.⁶, Yakushev M.V.⁶, Bonchyk O.Yu.⁷, Savytskyy H.V.⁷

 ¹ Scientific Research Company "Electron-Carat". Stryjska St., 202, Lviv-79031, Ukraine. E-mail: i.izhnin@carat.electron.ua
² Ioffe Institute. Politekhnicheskaya St., 26, St. Petersburg-194021, Russia.
³ Institute of Metallurgy and Material Science PAN. Reymonta St., 25, Krakow-30059, Poland.
⁴ National Research Tomsk State University. Lenina Av., 36, Tomsk-634050, Russia.
⁵P. Sagaidachny National Army Academy. Gvardijska St. 32, Lviv-79012, Ukraine.
⁶ A.V. Rzhanov Institute of Semiconductor Physics, SB RAS. ac. Lavrentieva Av., 13, Novosibirsk-630090, Russia.
⁷ Ya.S. Pidstryhach Institute for Applied Problems of Mechanics

and Mathematics NASU. Naukova St., 3b, Lviv-79060, Ukraine.

We report on the results of comparative study of defect microstructure of molecular-beam epitaxy-grown epitaxial films of $Hg_{1,x}Cd_xTe$ (x=0.22) implanted with arsenic ions with 190 keV energy and 10¹⁴ cm⁻² fluence. Two samples were studied: as-grown *n*-type sample and vacancy-doped *p*-type sample obtained with thermal annealing (220 °C, 24 h) at low mercury pressure in helium atmosphere. The microstructure observations were performed with transmission electron microscopy in bright field and high-resolution modes. It was found that after the implantation radiation-damaged area in two studied samples was identical and consisted of three characteristic layers, including a sub-surface layer with low defect density, a deeper layer with big dislocation loops and a deeply buried layer with small dislocation loops. Both the characteristic sizes of these regions and the types of radiation nano-defects were identical: dislocation loops, stacking faults, and crystal lattice disturbances. This confirms the conclusion that it is possible to study the electrical properties of radiation donor defects in *p*-type samples, since under real conditions in n-type samples they are masked by the high conductivity of the *n*-base.