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Abstract—The paper deals with the development of 
methods for solving the inverse problem of gaseous media 
optics by determining the parameters of high-temperature 
gaseous media from its spectral characteristics. It is proposed 
to use artificial neural networks to determine the temperature 
and partial pressures of water vapor, carbon dioxide, carbon 
oxide and nitrogen oxide from its transmissivities.
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I. INTRODUCTION

The optical methods are actively applied to remote 
analysis of gaseous media of different origins. Contactless 
study of gaseous mixture is the main advantage of optical 
measuring [1]. These methods are irreplaceable for the study 
of very distant objects such as space objects or objects 
dangerous to human life, for example, emissions from 
volcanoes and industries or jet engines exhaust [1–3].  

In [4], it was proposed to use artificial neural networks 
(ANN) to find the temperature and partial pressure of one 
gas. This paper discusses the case of solving the inverse 
problem of the optics of gaseous media in the case of a four-
component gaseous medium. 

II. METHOD OF TRANSMISSIVITY CALCULATION

To calculate the transmissivity of the gaseous medium the 
following formula was used: 
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where v is the wavenumber; v is the spectral resolution; 
k(v, T, P) is the absorption coefficient; T and P are 
temperature and total pressure of gas mixture; l = 55 cm is 
optical path. 

The absorption coefficients were calculated by the line-
by-line method: 
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where pi is the partial pressure of the i-gas; vij is the 
wavenumber of j-line of the i-gas with the shift coefficient of 

ij; Sij(T) is the intensity of the j-line of the i-gas at 
temperature : 

0 0

0
0

( ) 1 e
( ) ( )

( ) 1

ij BB

B ij B

hcv k ThcE k T

ij ij hcE k T hcv k T

Q T e
S T S T

Q T e e
, (3) 

where Q(T) is the statistical sum; E is the energy of the low 
state of transition; h, c , and kB are the fundamental physical 
constants; 0 = 296 K.  

To calculate the spectral line profile, the Lorentz 
lineshape was used: 
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In the case under consideration, the main reason for the 
broadening of spectral lines is collisions of the components 
of the gaseous medium. Half-width of the j-spectral line of 
the i-gas for required temperature and total pressure was 
calculated as: 
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where self
ij  and air

ij  are the self- and air-broadening half-

width of the j-line of the i-gas at temperature 0, ijn is 

temperature-dependence exponent of half-width of the j-line 
of the i-gas which were taken from HITEMP2010 [5].  

III. SELECTING THE SPECTRAL CENTERS

To determine the unknown parameters of a gaseous 
medium, it is sufficient that the number of spectral centers is 
equal to the number of these parameters. For the case 
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considered in this article, it is necessary to determine the 
partial pressures of four gases (H2O, CO2, CO and NO) and 
the temperature of the gaseous medium, therefore the number 
of spectral centers should be equal to five. However, as it has 
been shown previously [6], the use of a larger number of 
spectral centers leads to an increase in the accuracy of 
solving the inverse problem. This is due to the fact that at 
different combinations of temperature and partial pressures, 
the same amount of absorption by the gaseous medium can 
be observed. Therefore, the spectral centers should be chosen 
in such a way as to provide different temperature 
dependences of absorption. 

Another criterion for the choice of spectral centers is that 
for each spectral center there should be a predominance of 
the absorption of a certain gas over the absorption of other 
components of the gaseous medium. 

The spectral centers suitable for solving the inverse 
problem under consideration were chosen from the spectral 
interval 1000–2500 cm 1 in which the absorption bands of 
water vapor, carbon dioxide, carbon oxide and nitrogen oxide 
are located (Table I). 

TABLE I. THE APPLIED SPECTRAL CENTERS 

No.
Spectral center (cm–1)

H2O CO2 CO NO

1 1136 1023 2004 1853 

2 1152 1049 2009 1900 

3 1173 2070 2021 1926 

4 1186 2084 2025 1940 

5 1198 2398 2033 1960 

There are many spectral lines of water vapor that meet 
the given criteria. The best suited spectral lines falling within 
the range 1100–1200 cm-1, where there is practically no 
overlap of spectral lines of water vapor with spectral lines of 
other components of the gaseous medium. 

The intersection of the carbon oxide absorption band with 
the carbon dioxide one complicates the selection of spectral 
centers in the case of CO2. At T = 800 K on the spectral 
centers 2070 cm 1 and 2084 cm 1, the absorption of CO is 
greater than CO2 one. However, the situation changes with 
increasing temperature. At T = 1800 K the absorption of CO 
is many times less than the absorption of CO2. In the case of 
the spectral centers 1023 cm 1 and 1049 cm 1 at T > 1000 K, 
water vapor absorption dominates. 

The spectral centers with the dominant absorption of 
carbon oxide were selected from the spectral range 2000–
2050 cm 1. The greatest influence of absorption of the main 
interfering gas 2  is observed at spectral centers 2004 cm 1, 
2021 cm 1 and 2025 cm 1 of CO, reaching 25% at a 
temperature of 1800 K. It should be noted that nitric oxide is 
another interfering gas, which has a similar effect on the 
absorption value as water vapor only at spectral centers 
2004 cm 1 and 2009 cm 1 of CO. 

In the case of nitric oxide, the spectral centers were 
selected from the spectral interval 1850–2000 cm 1. Lines 
from the absorption band of water vapor also fall into this 
spectral interval, and at a temperature of 1800 K at spectral 
centers 1853 cm 1 and 1926 cm 1, they contribute 30% to the 

total absorption of the gaseous medium. The spectral center 
1960 cm 1 of NO has an overlap with lines of CO absorption 
band that contribute less than 25% to absorption.  

Thus, 20 spectral centers were selected (five for each of 
the gases under consideration), which are suitable for 
determining the partial pressures of water vapor, carbon 
dioxide, carbon oxide and nitrogen oxide entering the 
gaseous medium and temperature when changing them in the 
ranges from 0.1 atm to 0.7 atm and from 800 K to 1800 K 
respectively. 

IV. ARTIFICIAL NEURAL NETWORK 

For solving the problem under consideration a feed-
forward neural network (Fig. 1) was used [7]. The number of 
spectral centers specifies the number of inputs of the input 
layer of the ANN. The desired parameters (temperature and 
partial pressure of gases) were obtained at output neurons of 
the ANN. 

The output signal ky  of the kth neuron (Fig. 2) is defined 
as follows 

( )k ky , (6) 

1
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where ( )k  is the activation function; k  is the activation 
potential; uk is a linear combination of input signals; bk is 
shift; ix  are input signals; ki  are synaptic weights of the kth 
neuron. Logistical function with the slope parameter a was 
used as the activation function 

1
( )

1 exp a
, (8) 

Software implementation of the ANN was realized in the 
Python language using the open neural network library 
Keras. The TensorFlow library was as a backend. 

For training the ANN, the Adam optimization algorithm 
was used. The values of the transmissivity were used as input 
data for training the ANN, and the values of the gas 
temperature and partial pressures at which they were 
calculated were output data. 

 

Fig. 1. Feed-forward neural network. 
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Fig. 2. Model of the kth neuron. 

V. RESULTS AND DISCUSSION 

The transmittance was calculated for a mixture of H2O, 
CO2, CO, NO gases in the temperature range from 800 K to 
1800 K in increments of 100 K and in the range of partial 
pressures from 0.1 atm to 0.7 atm with increments of 0.1 atm. 

 
Fig. 3. Dependenses of the maximum relative error of determining 
temperature and partial pressure of gases on the learning sample size in the 
case of ANN with three hidden layers of fifteen neurons. 

 

Fig. 4. Dependenses of the maximum relative error of determining 
temperature and partial pressure of gases on the learning sample size in the 
case of ANN with three hidden layers of twenty neurons. 

Training the ANN was carried out on three learning 
samples (LS) differing in the number of examples in them. 
The size of the learning sample No. 1, No. 2, No. 3 was 

respectively 10%, 20%, 30% of the total number of samples. 
ANN with a different number of hidden layers and neurons 
in them were considered. 

Figs. 3–4 and Table II show the results of solving the 
inverse problem of the optics of gaseous media. 

TABLE II. MAXIMUM RELATIVE ERRORS IN DETERMINING TEMPERATURE 
AND PARTIAL PRESSURES OF GASES (ANN WITH THREE HIDDEN LAYERS 

OF TWENTY NEURONS) 

LS No. 

Maximum relative errors (%) 

Partial pressure 
T

H2O CO2 CO NO

1 4.0 5.6 5.4 5.7 2.5 

2 7.3 6.7 4.4 6.5 2.1 

3 3.4 4.3 3.1 3.1 1.8 

As the size of the learning sample increases, the relative 
error decreases. An increase in the number of neurons from 
15 to 20 in the hidden layers also reduced the relative error. 

The relative error in determining the partial pressures is 
approximately three times greater than the relative error in 
determining the temperature. 

VI. CONCLUSION 

Thus, as a result of this research, ANN was obtained that 
allows to determine the temperature and partial pressures of 
water vapor, carbon dioxide, carbon oxide and nitrogen oxide 
in the interval 800–1800 K and 0.1–0.7 atm, respectively, 
with a relative error of less than 5%. 
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